

# ESCOM

# SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

### SYNTHESIZED SCHOOL PROGRAM

| ACADEMIC UNIT:    | Escuela Superior de Cómputo            |            |
|-------------------|----------------------------------------|------------|
| ACADEMIC PROGRAM: | Ingeniería en Sistemas Computacionales |            |
| LEARNING UNIT:    | Supervised Neural Networks             | LEVEL: III |

#### AIM OF THE LEARNING UNIT:

The student builds computer systems for pattern recognition and classification, based on the technology of Supervised Learning Neural Networks.

#### CONTENTS:

- I. Fundamentals of Supervised Neural Networks.
- II. Single-layer Supervised Neural Networks.
- III. Feed forward Multilayer Supervised Neural Networks.
- IV. Design & Simulation of Neural Networks.
- v. Accelerated Learning Methods on Multilayer Neural Networks.
- VI. Implementations of Neural Networks on programmable devices

#### **TEACHING PRINCIPLES:**

The teacher will apply a Projects-Based learning process, through inductive and heuristic methods using analysis techniques, technical data, organization charts, cooperative presentation, exercise-solving and the production of the learning evidences. It will encourage teamwork and individual integrity and responsibility to the environment. Moreover, an autonomous learning will be encouraged by the development of a final project.

#### **EVALUATION AND PASSING REQUIREMENTS:**

The program will evaluate the students in a continuous formative and summative way, which will lead into the completion of learning portfolio. Some other assessing methods will be used, such as revisions, practical's, class participation, exercises, learning evidences and a final project.

Unit Learning can also be approved through::

- Evaluation of acknowledges previously acquired, by developing a computer program and a written evidence of learning
- Official recognition by either another IPN Academic Unit of the IPN or by a national or international external academic institution besides IPN with a current cooperation a agreement.

#### **REFERENCES:**

- Demouth H., Beale M., Hagan M. (2009). Matlab Neural Network Toolbox 6 User's Guide. The Matworks, Inc, USA. on line only (16/marzo/2011).
   www.mathworks.com/access/helpdesk/help/pdf\_doc/nnet/nnet.pdf.
- Hagan, M. T. Demuth, H. B. Beale, M. (2002). *Neural Network Design*. USA: PWS Publishing Company. ISBN-13: 978-0534943325.
- Haykin, S. (2009). Neural Networks and Learning Machines. (3<sup>a</sup> Edition). USA: Prentice Hall. ISBN: 13: 978-0-13-147139-9.
- Ham, F. M. Kostanic, I. (2001). *Principles of Neurocomputing for Science & Engineering*. New York USA: Mc Graw-Hill. ISBN 0-07-025966-6.
- Omondi A. R., Rajapakse J. C. (2006). FPGA Implementation of Neural Networks, Springer, Dordrecht, The Netherlands. ISBN -10: 0-387-28485-0 (HB)



# SECRETARÍA ACADÉMICA



### DIRECCIÓN DE EDUCACIÓN SUPERIOR

ACADEMIC UNIT: Escuela Superior de Cómputo. ACADEMIC PROGRAM: Ingeniería en Sistemas Computacionales LATERAL OUTPUT: Analista Programador de Sistemas de Información. FORMATION AREA: Professional. MODALITY: Presence. LEARNING UNIT: Supervised Learnig Neural Networks. TYPE OF LEARNING UNIT: Theorical - Practical, Optative. VALIDITY: August, 2011 LEVEL: III. CREDITS: 7.5 Tepic, 4.39 SATCA

### ACADEMIC AIM

This program contributes to the profile of graduated on Ingeniería en Sistemas Computacionales, to develop the skills to design computer systems based on supervised neural networks for solving computational problems in engineering, the ability to describe and to distinguish the major network architectures, the ability to implement intelligent systems in integrated circuits, ability to design and simulate intelligent systems through the main neural network simulators.

It also helps to develop generic skills such as strategic thinking, creative thinking, collaborative and participatory work, assertive communication, contributing to their integral development, so The student will be able to perform in different sectors of society, public private research and integrate and manage internal work teams and multidisciplinary with an attitude of leadership, ethics and responsibility. The student is continuously updated to meet the needs of society and sustainable development of the country

It is based on the progrmasof linear algebra, calculus, algorithms and structured programming, analysis and object-oriented design, and software engineering. It is related laterally to pattern recognition, artificial intelligence, genetic algorithms, Fuzzy Systems Engineering, Computational Intelligence in Control Engineering and Unsupervised Artificial Neural Networks. This supports subsequent to the learning units Terminal Work I and II.

#### AIM OF THE LEARNING UNIT:

The student builds computer systems for pattern recognition and classification, based on the technology of Supervised Learning Neural Networks.

#### **CREDITS HOURS**

1.5

THEORETICAL CREDITS / WEEK: 3.0

PRACTICAL CREDITS / WEEK:

**THEORETICAL HOURS / SEMESTER:** 54

PRACTICAL HOURS / SEMESTER: 27

**AUTONOMOUS LEARNING HOURS: 54** 

CREDITS HOURS / SEMESTER: 81

**LEARNING UNIT DESIGNED BY:** Academia de Ingeniería de software.

REVISED BY: Dr. Flavio Arturo Sánchez Garfias. Subdirección Académica

APPROVED BY: Ing. Apolinar Francisco Cruz Lázaro. Presidente del CTCE AUTHORIZED BY: Comisión de Programas Académicos del Consejo General Consultivo del IPN

Ing. Rodrigo de Jesús Serrano Domínguez Secretario Técnico de la Comisión de Programas Académicos



Cooperative-evaluation Rubrics

Written Learning Evidence

5%

40%

INSTITUTO POLITÉCNICO NACIONAL

# SECRETARÍA ACADÉMICA



| LEARN    | ING UNIT: Supervised Neural Network                                                                                                                                                                   | S                                             |                                  | PAGE:                                   | 3          | <b>OUT OF</b> 11 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------|-----------------------------------------|------------|------------------|
| THEMA    |                                                                                                                                                                                                       |                                               | damenta                          | ls of Supe                              | rvised Net | ural Networks    |
| The stu  | UNIT OF COI                                                                                                                                                                                           | -                                             | a atura af                       | Antificial N                            |            | warka            |
| No.      | dent classifies supervised learning algorithms based<br>CONTENTS                                                                                                                                      | Teacher led-<br>Instruction<br>HOURS<br>HOURS |                                  | Teacher led- Autono<br>Instruction Lear |            | REFERENCES       |
|          |                                                                                                                                                                                                       | Т                                             | P                                | T                                       | P          | -                |
| 1.1      | Historical framework of artificial neural networks.                                                                                                                                                   | 3.0                                           | 0.0                              | 5.0                                     | 3.0        | 3B, 4B, 7B       |
| 1.2      | Definitions of neural networks.                                                                                                                                                                       |                                               |                                  |                                         |            |                  |
| 1.3      | The biological neuron model.                                                                                                                                                                          |                                               |                                  |                                         |            |                  |
| 1.4      | The artificial neural network model.                                                                                                                                                                  |                                               |                                  |                                         |            |                  |
| 1.5      | Characteristics of neural networks.                                                                                                                                                                   |                                               |                                  |                                         |            |                  |
| 1.6      | Applications of neural networks.                                                                                                                                                                      |                                               |                                  |                                         |            |                  |
| 1.7      | Supervised learning algorithms.                                                                                                                                                                       |                                               |                                  |                                         |            |                  |
| 1.8      | Supervised neural network architectures                                                                                                                                                               |                                               |                                  |                                         |            |                  |
|          | Subto                                                                                                                                                                                                 | otals: 3.0                                    | 0.0                              | 5.0                                     | 3.0        |                  |
| strategy | TEACHING P<br>ematic unit must start in the frame of the course and<br>of project-based learning, using the inductive met<br>g, cognitive maps, worksheets, presentation of add<br>al.<br>LEARNING EV | team buildin<br>hod; This u<br>ditional issue | g. Thema<br>nit uses<br>es, deve | learning te                             | chniques   | such as concep   |
| Diagno   | stic Test                                                                                                                                                                                             | VALUATION                                     |                                  |                                         |            |                  |
| Project  | Point10%Project proposal10%Graphic Organizers5%Worksheet5%Exposure themes10%Report of Practical20%                                                                                                    |                                               |                                  |                                         |            |                  |
|          | Self-Evaluation Rubrics 5%                                                                                                                                                                            |                                               |                                  |                                         |            |                  |
|          | Coordination Dubrico 50/                                                                                                                                                                              |                                               |                                  |                                         |            |                  |



# SECRETARÍA ACADÉMICA



| LEARNI                                                                                                                                   | NG UNIT: Supervis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed Neural Networks                                                                                                       |                                      |          | PAGE                            | : 4        | OUT OF            | 11    |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|---------------------------------|------------|-------------------|-------|
| THEMA                                                                                                                                    | TIC UNIT: II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TITLE: S                                                                                                                 | ingle-lay                            | yer Supe | rvised Net                      | ural Netwo | rks               |       |
|                                                                                                                                          | dent solves classification proble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                          | -                                    | on learn | ing algorit                     | hms and    | architecture      | es of |
| No.                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          | Teacher led-<br>Instruction<br>HOURS |          | Autonomous<br>Learning<br>HOURS |            | REFERENCES<br>KEY |       |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          | т                                    | Р        | Т                               | Р          | -                 |       |
| 2.1<br>2.1.1<br>2.1.2<br>2.1.3<br>2.1.4<br>2.1.5<br>2.1.6<br>2.1.7<br>2.2<br>2.2.1<br>2.2.2<br>2.2.3<br>2.2.4<br>2.2.5<br>2.2.6<br>2.2.7 | The Perceptron<br>General features of the simple<br>Simple and multiple perceptror<br>Perceptron learning rule.<br>Main Applications.<br>Examples and exercises of gra<br>Examples and classification<br>perceptron rule.<br>Perceptron Simulation in MATL<br>Adaline network<br>General characteristics of Adal<br>Adaline Architecture<br>Learning algorithm (delta rule)<br>Main applications<br>Examples and exercises in pat<br>Examples and exercises of sig<br>Adaline network simulation in<br>Toolbox (Matlab/NNT). | architecture.<br>phic rating method<br>exercises using the<br>.AB / NNT.<br>ine<br>tern classification<br>nal processing | 1.5                                  | 0.5      | 2.5                             | 1.5        | 3B, 4B,<br>12B    | 7B,   |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Subtotals:                                                                                                               | 3.0                                  | 1.0      | 5.0                             | 3.0        |                   |       |
|                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TEACHING PRINC                                                                                                           |                                      | 1.0      | 0.0                             | 0.0        |                   |       |
| added c                                                                                                                                  | t will be addressed through the s<br>oncept mapping techniques, cog<br>iming algorithms, and advance fi                                                                                                                                                                                                                                                                                                                                                                                                                      | trategy of project-based I<br>nitive maps, exercises-sc<br>nal project.                                                  | earning,<br>olving, ex               |          |                                 |            |                   | cal   |
| Project [                                                                                                                                | Portfolio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEARNING EVALU                                                                                                           | ATION                                |          |                                 |            |                   |       |
| G<br>E<br>F<br>F<br>A<br>S<br>C                                                                                                          | Portfolio:<br>Graphic Organizers<br>Exercise delivery<br>Exposure themes<br>Report of Practical<br>Program delivery<br>Advance of the Project<br>Self-Evaluation Rubrics<br>Cooperative-evaluation Rubrics<br>Vritten Learning Evidence                                                                                                                                                                                                                                                                                      | 5%<br>5%<br>20%<br>10%<br>5%<br>5%<br>5%<br>40%                                                                          |                                      |          |                                 |            |                   |       |



# SECRETARÍA ACADÉMICA



| THEMA                                                                                                                                    | ATIC UNIT: III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TITLE: F                                                                                   | eed forv            | vard Mul             | tilayer Sup | ervised N            | eural Networks     |                |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------|----------------------|-------------|----------------------|--------------------|----------------|
| -                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UNIT OF COMPE                                                                              | -                   |                      |             |                      |                    |                |
|                                                                                                                                          | udent solves problems of comple<br>sed multilayer neural networks.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ex pattern classification                                                                  | , basec             | d on lea             | rning algo  | orithms an           | d architectures of |                |
| No.                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Instruction                                                                                |                     | CONTENTS             |             | Instruction Learning |                    | REFERENCES KEY |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                            | Т                   | Р                    | Т           | Р                    | _                  |                |
| 3.1<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br>3.1.6<br>3.1.7<br>3.1.8<br>3.2<br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6 | Multilayer Perceptrons<br>General Features<br>Multilayer network architecture.<br>Examples of pattern classificatio<br>Method<br>Generalized Delta Rule (Backpre<br>Main applications.<br>Examples and exercises in funct<br>Examples and exercises in patter<br>Multilayer network simulation in<br>Radial Basis Function Neural Ne<br>General Features.<br>Architecture.<br>Learning algorithm.<br>Main applications.<br>Examples and exercises of funct<br>pattern classification<br>Simulations in MATLAB/NNT. | opagation)<br>tions approximation.<br>ern classification<br>Matlab / NNT<br>etworks (RBFN) | 1.5                 | 0.5                  | 3.0         | 1.5                  | 3B, 4B, 7B, 12B    |                |
| 3.2.6                                                                                                                                    | Simulations in MATLAB/NNT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |                     |                      |             |                      |                    |                |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Subtotals:                                                                                 | 3.0                 | 1.5                  | 6.0         | 3.0                  |                    |                |
| concep                                                                                                                                   | it will be addressed through the st<br>t mapping techniques, cognitive<br>nming algorithms, and advance fin                                                                                                                                                                                                                                                                                                                                                                                                        | e maps, exercises-solv                                                                     | learning<br>ing, ex | i, using t<br>posure |             |                      |                    |                |
| Project                                                                                                                                  | Portfolio:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |                     | •                    |             |                      |                    |                |
|                                                                                                                                          | Graphic Organizers<br>Exercise delivery<br>Exposure themes<br>Report of Practical<br>Program delivery<br>Advance of the Project<br>Self-Evaluation Rubrics<br>Cooperative-evaluation Rubrics<br>Written Learning Evidence                                                                                                                                                                                                                                                                                          | 5%<br>5%<br>10%<br>20%<br>15%<br>5%<br>5%<br>5%<br>5%<br>30%                               |                     |                      |             |                      |                    |                |



# SECRETARÍA ACADÉMICA



### DIRECCIÓN DE EDUCACIÓN SUPERIOR

LEARNING UNIT:

Supervised Neural Networks

**PAGE:** 6 **OUT OF** 11

| THEMA                                                         | TIC UNIT: IV                                                                                                                                                                                                                   |                         |                        | Design                               | & Simulation | on of Neur  | al Networks              |             |  |                |  |                       |                   |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|--------------------------------------|--------------|-------------|--------------------------|-------------|--|----------------|--|-----------------------|-------------------|
|                                                               | dent designs systems of complex<br>er neural networks.                                                                                                                                                                         | UNIT OF COMPE           |                        | heuristic                            | s and sim    | ulation too | ls of supervised         |             |  |                |  |                       |                   |
| No.                                                           | CONTEN                                                                                                                                                                                                                         | TS                      | Instru                 | Teacher led-<br>Instruction<br>HOURS |              | Instruction |                          | Instruction |  | struction Lear |  | omous<br>rning<br>URS | REFERENCES<br>KEY |
|                                                               |                                                                                                                                                                                                                                |                         | Т                      | Р                                    | Т            | Р           |                          |             |  |                |  |                       |                   |
| 4.1<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4<br>4.1.5<br>4.1.6     | Multilayer Network Design (Fee<br>Overview of neural network des<br>Number of input and output neu<br>Number of hidden layers.<br>Number of neurons in hidden la<br>Sets standards for training and<br>Training methodology.   | sign.<br>urons.         | 1.0                    |                                      | 1.5          |             | 1C, 2C, 10C,<br>11C, 13C |             |  |                |  |                       |                   |
| 4.1.7<br>4.1.8<br>4.2<br>4.2.1<br>4.2.2                       | Unwanted effects during trainin<br>Correction methods underfitting<br>MATLAB: Neural Network Tool<br>Introduction.<br>General Features                                                                                         | 1.0                     | 0.5                    | 1.5                                  | 1.0          |             |                          |             |  |                |  |                       |                   |
| 4.2.3<br>4.2.4<br>4.3<br>4.3.1<br>4.3.2                       | Construction of neural networks<br>Simulation of supervised artificial neural networks.<br>NeuroSolutions.<br>Introduction.<br>General Features                                                                                |                         |                        | 0.5                                  | 1.5          | 1.0         |                          |             |  |                |  |                       |                   |
| 4.3.3<br>4.3.4<br>4.4<br>4.4.1<br>4.4.2                       | Construction of neural networks<br>Supervised Neural Network Sin<br>Stuttgart Neural Network Simul<br>Introduction.<br>General Features.                                                                                       | nulation                | 1.0                    | 0.5                                  | 1.5          | 1.0         |                          |             |  |                |  |                       |                   |
| 4.4.3<br>4.4.4                                                | Neural network construction.<br>Supervised Neural Network Sin                                                                                                                                                                  | nulation                |                        |                                      |              |             |                          |             |  |                |  |                       |                   |
|                                                               |                                                                                                                                                                                                                                | Subtotals:              | 4.0                    | 1.5                                  | 6.0          | 3.0         |                          |             |  |                |  |                       |                   |
| added c<br>program<br>Project I<br>G<br>E<br>E<br>R<br>R<br>P | it will be addressed through the<br>concept mapping techniques, cog<br>ming algorithms, and advance fir<br>Portfolio:<br>Graphic Organizers<br>Exercise delivery<br>Exposure themes<br>Report of Practical<br>Program delivery | nitive maps, exercises- | ed learn<br>solving, e |                                      |              |             |                          |             |  |                |  |                       |                   |
| S                                                             | Self-Evaluation Rubrics<br>Cooperative-evaluation Rubrics<br>Vritten Learning Evidence                                                                                                                                         | 5%<br>5%<br>30%         |                        |                                      |              |             |                          |             |  |                |  |                       |                   |



# SECRETARÍA ACADÉMICA



### DIRECCIÓN DE EDUCACIÓN SUPERIOR

| LEARNING | UNIT: |
|----------|-------|
|----------|-------|

Supervised Neural Networks

**PAGE:** 7 **OUT OF** 11

| THEMA                   | TIC UNIT: V                                                                                                            | TITLE: Accelerated                    |                                      | ng Metho  | ds on Mult                      | tilayer Neu | ral Networks      |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|-----------|---------------------------------|-------------|-------------------|--|
| The stud                | lent simulates multilayer supervised n                                                                                 | UNIT OF COMPET<br>eural networks base | -                                    | lvanced l | heuristics a                    | and numer   | ical methods.     |  |
| No.                     | CONTENTS                                                                                                               |                                       | Teacher led-<br>Instruction<br>HOURS |           | Autonomous<br>Learning<br>HOURS |             | REFERENCES<br>KEY |  |
|                         |                                                                                                                        |                                       | Т                                    | Р         | Т                               | Р           |                   |  |
| 5.1<br>5.1.1            | Variable learning rate<br>General Features                                                                             |                                       | 0.5                                  |           | 1.0                             | 0.5         | 3B, 4B, 7B,       |  |
| 5.1.2<br>5.1.3          | Learning algorithm.<br>Exercises.                                                                                      |                                       |                                      |           |                                 |             |                   |  |
| 5.1.4<br>5.2            | Simulation in Matlab / NNT.<br>Momentum Method.                                                                        |                                       | 0.5                                  |           | 0.5                             | 0.5         |                   |  |
| 5.2.1<br>5.2.2<br>5.2.3 | General Features<br>Learning algorithm.<br>Exercises.                                                                  |                                       |                                      |           |                                 |             |                   |  |
| 5.2.4<br>5.3<br>5.3.1   | Simulation in Matlab / NNT<br>Variable and momentum learning.<br>General characteristics                               |                                       | 1.0                                  | 0.5       | 1.5                             | 1.0         |                   |  |
| 5.3.2<br>5.3.3<br>5.3.4 | Learning algorithm.<br>Exercises.<br>Simulation in Matlab / NNT.                                                       |                                       |                                      |           |                                 |             |                   |  |
| 5.3.4<br>5.4<br>5.4.1   | Conjugate Gradient Method.<br>General Features.                                                                        |                                       | 1.0                                  | 0.5       | 1.5                             | 1.0         |                   |  |
| 5.4.2<br>5.4.3          | Learning algorithm.<br>Exercises.                                                                                      |                                       |                                      |           |                                 |             |                   |  |
| 5.4.4<br>5.5<br>5.5.1   | Simulation in Matlab / NNT.<br>Levenberg Marquardt Algorithm.<br>General characteristics.                              |                                       | 1.0                                  | 0.5       | 1.5                             | 1.0         |                   |  |
| 5.5.2<br>5.5.3          | Learning algorithm.<br>Exercises                                                                                       |                                       |                                      |           |                                 |             |                   |  |
| 5.5.4                   | Simulation in Matlab / NNT                                                                                             | Cubtotolou                            | 4.0                                  | 4.5       | <u> </u>                        | 1.0         |                   |  |
|                         |                                                                                                                        | Subtotals:                            | 4.0                                  | 1.5       | 6.0                             | 4.0         |                   |  |
| added co                | t will be addressed through the strat<br>oncept mapping techniques, cognitive<br>ming algorithms, and advance final pr | e maps, exercises-s<br>oject.         | ed learni<br>olving, e               |           |                                 |             |                   |  |
| Project F               |                                                                                                                        | LEARNING EVALU                        | ATION                                |           |                                 |             |                   |  |
|                         | raphic Organizers 5%                                                                                                   |                                       |                                      |           |                                 |             |                   |  |
|                         | xercise delivery 5%                                                                                                    |                                       |                                      |           |                                 |             |                   |  |
|                         | xposure themes 10%<br>eport of Practical 20%                                                                           |                                       |                                      |           |                                 |             |                   |  |
|                         | rogram delivery 209                                                                                                    |                                       |                                      |           |                                 |             |                   |  |
|                         | dvance of the Project 15%                                                                                              |                                       |                                      |           |                                 |             |                   |  |
|                         | elf-Evaluation Rubrics 5%                                                                                              |                                       |                                      |           |                                 |             |                   |  |
| С                       | ooperative-evaluation Rubrics 5%                                                                                       | %                                     |                                      |           |                                 |             |                   |  |
| M                       | /ritten Learning Evidence 15%                                                                                          | 6                                     |                                      |           |                                 |             |                   |  |



INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA



| THEMA                            | TIC UNIT: VI                                                                                                                                                  | TITLE: Implementati                       | ons of N               | eural Net                | works on | programm                 | able devices      |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|--------------------------|----------|--------------------------|-------------------|
|                                  |                                                                                                                                                               | UNIT OF COMPE                             |                        |                          |          |                          |                   |
| The stu                          | dent designs supervised neural ne                                                                                                                             | twork based on program                    | nmable                 | devices.                 |          |                          |                   |
| No.                              | CONTENT                                                                                                                                                       | S                                         | Instr                  | er led-<br>uction<br>URS | Lea      | nomous<br>Irning<br>OURS | REFERENCES<br>KEY |
|                                  |                                                                                                                                                               |                                           | Т                      | Р                        | Т        | Р                        | -                 |
| 6.1<br>6.1.1<br>6.1.2            | Fundamentals of programmable<br>Introduction.<br>General Features                                                                                             | devices.                                  | 0.5                    |                          | 1.0      |                          | 1C, 9C, 8C,       |
| 6.1.3<br>6.1.4<br>6.2            | Classification<br>Overview of design and simulati<br>Fundamentals of embedded sys                                                                             |                                           | 0.5                    |                          | 1.0      |                          |                   |
| 6.2.1<br>6.2.2<br>6.2.3<br>6.2.4 | Introduction.<br>Definition.<br>Features<br>Examples of embedded systems                                                                                      |                                           |                        |                          |          |                          |                   |
| 6.3<br>6.3.1<br>6.3.2<br>6.3.3   | Main architectures for the constr<br>networks.<br>Introduction.<br>General Features.                                                                          |                                           | 1.0                    |                          | 2.0      | 2.0                      |                   |
| 6.3.4<br>6.4<br>6.4.1            | Neural network construction.<br>Supervised Neural Network Sim<br>Supervised Neural Network Imp<br>Programmable Devices.                                       |                                           | 1.0                    | 1.5                      | 2.0      | 2.0                      |                   |
| 6.4.2<br>6.4.3                   | Design and simulation of Superv<br>in programmable devices<br>Dedicated design implementation                                                                 |                                           |                        |                          |          |                          |                   |
|                                  |                                                                                                                                                               | Subtotals:                                | 3.0                    | 1.5                      | 6.0      | 4.0                      |                   |
| added o                          | it will be addressed through the<br>concept mapping techniques, cog<br>nming algorithms, and final project                                                    | nitive maps, exercises-s                  | ed learn<br>solving, e |                          |          |                          |                   |
| Project                          | Portfolio:                                                                                                                                                    |                                           |                        |                          |          |                          |                   |
| E<br>E<br>F<br>F<br>S            | Exercise delivery<br>Exposure themes<br>Report of Practical<br>Program delivery<br>Final project<br>Self-Evaluation Rubrics<br>Cooperative-evaluation Rubrics | 5%<br>5%<br>20%<br>15%<br>30%<br>5%<br>5% |                        |                          |          |                          |                   |



# SECRETARÍA ACADÉMICA



### DIRECCIÓN DE EDUCACIÓN SUPERIOR

LEARNING UNIT:

Supervised Neural Networks

### **RECORD OF PRACTICALS**

| No. | NAME OF THE PRACTICAL                                                   | THEMATIC<br>UNITS | DURATION | ACCOMPLISHMENT<br>LOCATION |
|-----|-------------------------------------------------------------------------|-------------------|----------|----------------------------|
| 1   | Simple neural models.                                                   | l                 | 3.0      | Computer Labs.             |
| 2   | The Perceptron.                                                         | Ш                 | 2.0      |                            |
| 3   | Adaline.                                                                | Ш                 | 2.0      |                            |
| 4   | Multilayer Perceptron.                                                  | 111               | 3.0      |                            |
| 5   | Radial Basis Networks.                                                  | Ш                 | 1.5      |                            |
| 6   | RNA Simulators                                                          | IV                | 4.5      |                            |
| 7   | Methods to accelerate the training of multilayer networks.              | V                 | 5.5      |                            |
| 8   | Supervised Neural Network<br>Implementation on Programmable<br>devices. | VI                | 5.5      |                            |
|     |                                                                         | TOTAL OF<br>HOURS | 27.0     |                            |

#### **EVALUATION AND PASSING REQUIREMENTS:**

The practical are considered mandatory to pass this unit of learning. The practical mean 20% in each thematic unit. The practices contribute 20% of the final grade.



# SECRETARÍA ACADÉMICA



| PERÍOD | UNIT    |                                                             | <b>ΕΛΑΙ ΠΑΤΙΟΝ ΤΕΒΜΟ</b>                                                                                            |                       |          |            |  |  |  |
|--------|---------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------|----------|------------|--|--|--|
| 1      | ,       | Continuous                                                  | evaluation 60% and written learning evidence 40%                                                                    | EVALUATION TERMS      |          |            |  |  |  |
| 2      | III, IV |                                                             | evaluation 70% and written learning evidence 30%                                                                    |                       |          |            |  |  |  |
| 3      | V, VI   | Continuous evaluation 75% and written learning evidence 55% |                                                                                                                     |                       |          |            |  |  |  |
|        |         | The Learnir                                                 | g unit I is 15% worth of the final score                                                                            |                       |          |            |  |  |  |
|        |         |                                                             | ig unit II is 15% worth of the final score                                                                          |                       |          |            |  |  |  |
|        |         |                                                             | ig unit III is 15% worth of the final score                                                                         |                       |          |            |  |  |  |
|        |         |                                                             | ig unit IV is 15% worth of the final score                                                                          |                       |          |            |  |  |  |
|        |         | The Learnir                                                 | ig unit V is 15% worth of the final score                                                                           |                       |          |            |  |  |  |
|        |         | The Learnir                                                 | ig unit VI is 25% worth of the final score                                                                          |                       |          |            |  |  |  |
|        |         |                                                             | it can also be approved through::                                                                                   |                       |          |            |  |  |  |
|        |         | • Ev                                                        | aluation of acknowledges previously acquired, by d                                                                  | leveloping a com      | puter    | prograr    |  |  |  |
|        |         |                                                             | d a written evidence of learning                                                                                    |                       |          |            |  |  |  |
|        |         |                                                             | ficial recognition by either another IPN Academic Un                                                                |                       |          | tional c   |  |  |  |
|        |         |                                                             | ernational external academic institution besides IPN a                                                              |                       |          |            |  |  |  |
|        |         | If accredit                                                 | ed by Special Assessment or a certificate of pro                                                                    | ficiency, this wil    | l inclu  | de a       |  |  |  |
|        |         |                                                             | part which contribute 50% of the grade and a the                                                                    |                       | t will j | orovide    |  |  |  |
|        |         | the remai                                                   | ning 50%, based on guidelines established by th                                                                     | e academy.            |          |            |  |  |  |
| KEY    | В       | С                                                           | REFERENCÉS                                                                                                          | •                     |          |            |  |  |  |
| 1      |         | X                                                           | Chu, P. P. (2008). FPGA Prototyping by VHDL Examp                                                                   | oles Xilinx Spartan-  | 3 vers   | ion. USA   |  |  |  |
|        |         |                                                             | Wiley-Interscience. ISBN 10:-0470185317.                                                                            |                       |          |            |  |  |  |
|        |         |                                                             |                                                                                                                     |                       |          |            |  |  |  |
| 2      |         | Х                                                           | Demouth H., Beale M., Hagan M. (2009). <i>Matlab Neural</i>                                                         | Network Toolbox       | 6 Usei   | 's Guide   |  |  |  |
|        |         |                                                             | The Matworks, Inc, USA. on line only (19/Nov/2009).<br>www.mathworks.com/access/helpdesk/help/pdf_doc/nnet/nnet.pdf |                       |          |            |  |  |  |
|        |         |                                                             | www.mainworks.com/access/neipues/neip/pui_uoc/nnei/nnei.pui                                                         |                       |          |            |  |  |  |
| 3      | Х       |                                                             | Hagan M. T., Demuth H. B., Beale M. (2002) Neural                                                                   | Network Design.       | PWS F    | Publishin  |  |  |  |
| -      |         |                                                             | Company. USA. 1-665. ISBN-10: 0971732108                                                                            |                       |          |            |  |  |  |
| 4      | Х       |                                                             | Ham F. M., Kostanic I. (2001). Principles of Neurocompu                                                             | iting for Science &   | Enaine   | erina M    |  |  |  |
|        |         |                                                             | Graw-Hill, New York USA. 1-642. ISBN 0-07-025966-6.                                                                 | ang for colonico a    | Linginio | oning. III |  |  |  |
|        |         |                                                             |                                                                                                                     |                       |          |            |  |  |  |
| 5      |         | Х                                                           | Heaton J., (2008). Introduction to Neural Networks for C#                                                           | , 2nd Edition, Heato  | on Rese  | earch Ind  |  |  |  |
|        |         |                                                             | USA, 1-428. ISBN-10: 1604390093.                                                                                    |                       |          |            |  |  |  |
| 6      |         | x                                                           | Heaton J., (2008) Introductions of Neural Networks for J                                                            | lava 2nd Edition H    | leaton   | Researc    |  |  |  |
| ~      |         |                                                             | Inc. USA, 1-440. ISBN-10: 1604390085                                                                                |                       | 54.011   |            |  |  |  |
|        |         |                                                             |                                                                                                                     |                       |          |            |  |  |  |
| 7      | Х       |                                                             | Haykin S. (2009). Neural Networks and Learning Machine                                                              | es; 3ª Edition. Prent | ice Hal  | , USA. 1   |  |  |  |
|        |         |                                                             | 936. ISBN-10: -0-13-147139-2.                                                                                       |                       |          |            |  |  |  |
| 8      |         | x                                                           | Omondi A. R., Rajapakse J. C. (2006). FPGA Implement                                                                | tation of Neural Net  | works    | Springe    |  |  |  |
| Ŭ      |         |                                                             | Dordrecht, The Netherlands, 1- 360. ISBN -10: 0-387-284                                                             |                       |          | Springe    |  |  |  |
|        |         |                                                             |                                                                                                                     | - \ /-                |          |            |  |  |  |
|        |         |                                                             | Pedroni V. A. (2004). Circuit Design with VHDL, MIT P                                                               | ress, Massachuse      | etts US  | A, 1-363   |  |  |  |
| 9      |         | Х                                                           | ISBN 0-262-16224-5.                                                                                                 |                       |          |            |  |  |  |
|        |         |                                                             | Principe J., Euliano N. R. Lefebvre C. W. (1999).                                                                   | Noural and Ad         | antivo   | System     |  |  |  |
| 10     |         | х                                                           | Fundamentals through Simulations, Wiley & Sons, USA 1                                                               |                       | Puve     | Jysterns   |  |  |  |
| -      |         |                                                             | ISBN-10: 0471351679.                                                                                                |                       |          |            |  |  |  |
|        |         |                                                             |                                                                                                                     |                       |          |            |  |  |  |
|        |         |                                                             | Principe J., Lefebvre C., Lynn G, Fancourt C., Wooten D                                                             |                       | etting S | tarted     |  |  |  |
| 11     |         | Х                                                           | Manual version 5, NeuroDimension, Inc, USA 2006, on lin                                                             | e (19/Nov/2009).      |          |            |  |  |  |
|        |         |                                                             | http://www.neurosolutions.com/downloads/documentation.html                                                          |                       |          |            |  |  |  |
|        |         |                                                             | Reed R. D., Marks II R. J., (1999). Neural Smithing: S                                                              | Supervised Learning   | in Fe    | edforwar   |  |  |  |
| 12     | Х       |                                                             | Artificial Neural Networks, The MIT Press, USA, 1-352.                                                              | apervised Learning    |          | Jaiorwal   |  |  |  |
| -      |         |                                                             | ISBN-10: 0262181908                                                                                                 |                       |          |            |  |  |  |
|        |         |                                                             |                                                                                                                     |                       |          |            |  |  |  |
|        |         |                                                             | Zell A., Mamier G., Vogt M. et all; (1995). Stuttgart Neur                                                          |                       | or Use   | r Manua    |  |  |  |
| 13     |         | Х                                                           | version 4.2; University of Stuttgart, Germany, , 1-350. on I                                                        |                       |          |            |  |  |  |
|        |         | 1                                                           | http://www.ra.cs.uni-tuebingen.de/SNNS/UserManual/Use                                                               | rManual html          |          |            |  |  |  |



# SECRETARÍA ACADÉMICA



### **DIRECCIÓN DE EDUCACIÓN SUPERIOR**

#### **TEACHER EDUCATIONAL PROFILE PER LEARNING UNIT**

#### 1. GENERAL INFORMATION

| ACADEMIC UNIT:      | Escuela Superior de Co | Escuela Superior de Cómputo. |                    |           |                             |  |  |  |  |
|---------------------|------------------------|------------------------------|--------------------|-----------|-----------------------------|--|--|--|--|
| ACADEMIC PROGRAM:   | LEVEL !!!              |                              |                    |           |                             |  |  |  |  |
| FORMATION AREA:     | Institutional          | Basic Scientific             | Professional       |           | Ferminal and<br>Integration |  |  |  |  |
| ACADEMY: Ingeniería | de software.           | LEARNING UNIT: S             | upervised Neural I | Networks. |                             |  |  |  |  |

SPECIALTY AND ACADEMIC REQUIRED LEVEL: Master or PhD in Computer Science or Electrical Engineering

#### 2. AIM OF THE LEARNING UNIT:

The student builds computer systems for pattern recognition and classification, based on the technology of Supervised Learning Neural Networks.

#### 3. PROFFESSOR EDUCATIONAL PROFILE:

| KNOWLEDGE                                                                                                                                                                                                                                                                                                                                                                          | PROFESSIONAL<br>EXPERIENCE                                                                                                                                                                                                                                                   | ABILITIES                                                                                                                                                                                                                                                                                        | APTITUDES                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Concepts and<br/>learning algorithms<br/>of neural networks.</li> <li>Techniques for<br/>design and<br/>simulation of neural<br/>networks.</li> <li>Settlement Pattern<br/>classification<br/>problems.</li> <li>Function<br/>approximation<br/>using neural<br/>networks</li> <li>Knowledge of the<br/>Institutional<br/>Educational Model.</li> <li>English.</li> </ul> | <ul> <li>One year<br/>experience in the<br/>design of systems<br/>based on neural<br/>networks</li> <li>Two years<br/>experience in<br/>handling groups<br/>and collaborative<br/>work</li> <li>A year experience<br/>in the Institutional<br/>Educational Model.</li> </ul> | <ul> <li>Analysis and<br/>synthesis.</li> <li>Leadership.</li> <li>Decision making.</li> <li>Conflict<br/>Management.</li> <li>Group<br/>management.</li> <li>Verbal fluency of<br/>ideas.</li> <li>Teaching Skills</li> <li>Applications of<br/>Institutional<br/>Educational Model.</li> </ul> | <ul> <li>Responsible.</li> <li>Tolerant.</li> <li>Honest.</li> <li>Respectful.</li> <li>Collaborative.</li> <li>Participative.</li> <li>Interested to learning.</li> <li>Assertive.</li> </ul> |

DESIGNED BY

**REVISED BY** 

#### AUTHORIZED BY

M en C. José Luis Calderón Osorno COORDINATING PROFESOR

M en C. Edmundo René Durán Camarillo DR. Luz Noé Oliva Moreno M en C. Víctor Hugo García Ortega. COLLABORATING PROFESSORS Dr. Flavio Arturo Sánchez Garfias Subdirector Académico Ing. Apolinar Francisco Cruz Lázaro Director