INSTITUTO POLITECNICO NACIONAL

ESCUELA SUPERIOR DE COMPUTO
SECCION DE ESTUDIOS DE POSGRADO E
INVESTIGACION

ARQUITECTURA DE HARDWARE BASADA EN
MATRICES SISTOLICAS PARA COMPRESION DE DATOS
SIN PERDIDA

T ESTITS

QUE PARA OBTENER EL TITULO DE:

MAESTRIA EN CIENCIAS EN INGENIERIA EN
SISTEMAS COMPUTACIONALES MOVILES

PRESENTA:

ING. EDUARDO IVAN MEJIA BELLO

DIRECTORES DE TESIS:

N

P
M. EN C. ERIKA HERNANDEZ RUBIO

20 MACKOMAL —

DR. GELACIO CASTILLO CABREPA

ESCOM Ciudad de México
Junio 2025

SiP13

INSTITUTO POLITECNICO NACIONAL —

SECRETARIA DE INVESTIGACION Y POSGRADO
Direccion de Posgrado

ACTA DE REGISTRO DE TEMA DE TESIS
Y DESIGNACION DE DIRECTOR DE TESIS

Ciudad de México,a| 30 |de | @bril | qe| 2025
El Cclegio de Profesores de Posgrado de| EScuela Superior de Computo en su Sesioén
(Unidad Académica)

“ | i 310 I3 i He T

Ordinaria o, | 4 |celebradael dia | 11 |del mes | 20! de| 2025 | conoci6 la solicitud presentada
por el (I2) alumno (a):

["Apeliido Mejia | Apellido Belio Nombre (s): Eduardo Ivan

Paterno: | Materno: _
Ndmero de boleta: [B]2]3[0[6[3]9]
del Programa Académico de Posgrado: Maestria en Ciencias en Sistemas Computacionales Méviles

Referentz al registro de su tema de tesis

1.- Se zcordé aprobar el tema de tesis:

Arquitectura de hardware basada en matrices sistélicas para compresion de datos sin pérdida

Obj=tivo general del trabajo de tesis

isefar e implementar una arquitectura de hardware especializada en compresion de texto sin pérdida, basada
en LZ77, empleando matrices sistolicas.

2.- Se cesigna como Directores de Tesis a los profesores:

Direcior: |I M. en C. Erika Hernandsz Rubio i Director: Dr. Gelacio Castillo Cabrera

No aplica:]:J

3-ET fabajo de investigacion base para el desarrollo dz Ia tesis sera elaborado por el alumno en:

i | s=P1 ESCOM
| L

gue cuenta con los recursos e infraestructura necesarios.

4.- El interesado debera asistir a los seminarios desarrollados en el area de adscripcion del trabajo desde |a fecha
en que se suscribe la presente, hasta la aprobacién de |2 version completa de |a tesis por parte de la Comision
Revizora correspondiente,

Director(a) de Tes/

Director de Tesis (en su caso)

M. en C. Erika Hernandez Rubio

Alumn

{ &

Mejia Bello/£&d: sardo 1. M. en C

SI_P_41'_4
INSTITUTO POLITECNICO NACIONAL -

SECRETARIA DE INVESTIGACION Y POSGRADO
Direccion de Posgrado

ACTA DE REVISION DE TESIS

En la Ciudad de| México siendo las| "% |horas del dia| 2° |del mes de/ UM

del| 2025 | se reunieron los miembros de la Comision Revisora de la Tesis, designada por el Colegio de

Profesores de Posgrado de{ EScuela Superior de Computo para examinar la tesis titulada:

Arquitectura de hardware basada en matrices sistélicas para compresion de datos |del (la) alumno (a):
sin pérdida

Apellido Mojia Apellido Bello Nombre (s): Eduardo lvan
Paterno: Materno:
Numero de boleta: [B]2][3[0[6]3]9

Maestria en Ciencias en Sistemas Computacionales Méviles

Alumno del Programa Académico de Posgrado:

Una vez que se realizé un analisis de similitud de texto, utilizando el software antiplagio, se encontré que el
trabajo de tesis tiene 6 % de similitud. Se adjunta reporte de software utilizado.

Después que esta Comision revisé exhaustivamente el contenido, estructura, intencién y ubicacion de los
textos de la_tesis _identificados como coincidentes con otros documentos, concluydé que en el presente
trabajo Sl D NOIX[SE CONSTITUYE UN POSIBLE PLAGIO.,

JUSTIFICACION DE LA CONCLUSION: (Por ejemph, sf%a@mrf;ﬁm’m&m&ammdﬂa@ma&am&mmﬁemﬁm&mﬁmﬁa@mﬂ
Pi 0 . ongd N Lt de nruf:-. SO e

Finalmente y posterior a la lectura, revision individual, asi como el analisis e intercambio de opiniones, los
miembros de la Comision manifestaron APROBAR SUSPENDERD NO APROBAR[| Ia tesis por
UNANIMIDAD |Z[o MAYORIA en virtud de los motivos siguientes:

o) Iun P u[((.tfk’t- e lt e ok Ic o - (G [lZuiu’i }(-i‘- 'fmc.l?u-' i G

vali do? Lo flir‘\'guil;-er.‘u i Ovo (uLes 4a”

- e

- ~ .r

COMISION REVISORA DE TESIS ﬁ\ -/

M. en C. Erika Hernandez Rubio Dra. Miriam Pescador Rojas
Director de Tesis Nombre completo y firma———1
Nombre completo y firma . e Jp—
+ ST :
Dr. Gelacio Castillo Cabrera /' r. Rubén Galicia Mejia J iovanhy Kﬂiosso Garcia
e ' p’
2° Director de Tesis (en su caso) = Nombre completo y firma S E Nombre cmpleto y firma
Nombre completo y firma HSTITUTO POLITECRESIAEDNIE DEL COLEGIO DE

ESCUELA SUPERIOR DE COMPIRORESORES

Pagina 1 de 1

INSTITUTO POLITECNICO NACIONAL
SECRETARIA DE INVESTIGACION Y POSGRADO

CARTA DE AUTORIZACION DE USO DE OBRA PARA DIFUSION

En la Ciudad de México el dia 06 del mes de julio del afo 2025, el que suscribe Eduardo Ivan Mejia
Bello, alumno del programa M ria en Cienci n Sistem m ionales Moviles con nimero
de registro B230639, adscrito(a) a Escuela Superior de Computo manifiesta que es autor(a) intelectual
del presente trabajo de tesis bajo la direccién de M. en C. Erika Hernandez Rubio y el Dr. Gelacio

Castillo Cabrera y cede los derechos del trabajo intitulado: Arquitectura de hardware basada en
matrices sistdlicas para compresion de datos sin pérdida, al Instituto Politécnico Nacional, para su

difusién con fines académicos y de investigacion.

Los usuarios de la informacién no deben reproducir el contenido textual, graficas o datos del trabajo sin
el permiso expresado del autor y/o director(es). Este puede ser obtenido escribiendo a las siguiente(s)
direccién(es) de correo. emejiab010@gmail.com, emejiab0900@alumno.ipn.mx_. Si el permiso se

otorga, al usuario debera dar agradecimiento correspondiente y citar la fuente de este.

4

Nombre completo y firma autégrafa del (de la)
estudiante

Pagina 1 de 1

mailto:emejiab010@gmail.com
mailto:emejiab0900@alumno.ipn.mx

A mi esposa y a mi gata, por darme claridad en los dias dificiles y recordarme que
distraerme también es importante.

Agradecimientos

Este trabajo representa un logro en mi formaciéon académica y personal, y no habria
sido posible sin el respaldo de personas cuya presencia ha sido determinante en este camino.
Agradezco profundamente al Dr. Gelacio Castillo Cabrera, director de esta tesis, por su
orientacion constante, por inspirarme a comprender a fondo el funcionamiento interno de
los sistemas de computo y por fomentar en mi la iniciativa de asumir desafios comparables
a los que enfrentan grandes industrias. Su guia encendié en mi una curiosidad que se
convirtié en el motor de esta investigacion.

A la M. en C. Erika Hernandez Rubio, codirectora de este trabajo, le agradezco sin-
ceramente por su apoyo durante las etapas iniciales, cuando atin no sabia como abordar
adecuadamente el problema, ni qué ruta debia seguir. Su claridad y firmeza fueron clave
para enfocar el esfuerzo de forma efectiva.

A mis padres, por su presencia constante, por escuchar mis ideas, por alentar mis
proyectos, y por brindarme ensenanzas y momentos que atesoro profundamente. A mi
hermana, por preocuparse por mi bienestar, por impulsarme a ser mejor cada dia y por
ser una fuente incondicional de apoyo emocional.

Finalmente, a mi esposa, por acompanarme con paciencia y entrega, por escuchar
incluso lo que parecia insignificante, y por construir conmigo un camino en el que ambos
podamos crecer, comprendernos y sostenernos mutuamente. Su presencia ha sido un pilar
firme en el desarrollo de esta investigacion y en la consolidacion de este logro.

II

Resumen

Se aborda el diseno de una arquitectura de hardware especializada en compresion de
datos sin pérdida, para su futura implementacién como un procesador adicional en diversos
sistemas. Se realiza el disefio con los principios conocidos como matrices sistolicas. Con
ello se disminuye el uso de recursos en el procesador principal realizando la tarea de com-
presion, un proceso critico en la vida diaria. Considerando la gran cantidad de dispositivos
y software a nivel mundial que realizan este proceso de una u otra forma, al grado que se
ha vuelto transparente para el usuario, pero, sigue siendo de suma importancia tanto en el
almacenamiento como en la transmision de informaciéon. Con ello, debido al constante in-
cremento de generacion de datos y los recursos limitados para poder procesarlos, el trafico
de las redes y la amplia utilizacion del almacenamiento de datos digitales que se exige en
la actualidad; la implementacion de algoritmos de compresion de datos en hardware cobra
relevancia. El documento revisa diversas técnicas de compresion sin pérdidas, desde su
fundamento matemaético, como los cdédigos Huffman, el cdédigo aritmético y los algoritmos
de Lempel-Ziv (LZ). Se explora el conocimiento necesario para disefiar una implementa-
cion basada en el algoritmo de ventana deslizante, tomando en cuenta aspectos técnicos y
mejoras que se pueden llevar a cabo. Ademas, se realiza una prueba de concepto del diseno
desarrollado sobre un FPGA, aprovechando su capacidad para realizar miltiples funciones
digitales mediante la configuracion de bloques logicos programables y sus interconexio-
nes. La estructura del documento comprende secciones como introduccién, planteamiento
del problema, justificacion, objetivos, antecedentes, metodologia, estado del arte, diseno,
construcciéon y pruebas.

II1

Abstract

This work presents the design of a hardware architecture specialized in lossless da-
ta compression, intended for future integration as an auxiliary processor within various
systems. The design is based on systolic array principles, enabling the offloading of com-
pression tasks from the main processor. This approach is especially relevant given that
compression is a critical process in daily computing, across devices and software worldwi-
de, to the extent that it has become transparent to the end-user. Nonetheless, compression
remains essential for both data storage and transmission.

Due to the ever-increasing generation of data and the limited resources available to pro-
cess it, as well as the demands on network traffic and digital storage, the implementation of
data compression algorithms in hardware is of growing importance. This document reviews
various lossless compression techniques, including their mathematical foundations such as
Huffman coding, arithmetic coding, and the Lempel-Ziv (LZ) family of algorithms. A de-
tailed analysis of sliding window-based implementations is presented, considering technical
trade-offs and optimization strategies.

A proof of concept of the proposed architecture was developed and tested on an FP-
GA, leveraging its reconfigurable logic blocks and interconnects to perform specialized
digital functions. The structure of this thesis includes sections on introduction, problem
statement, justification, objectives, background, methodology, state of the art, design, im-
plementation, and testing.

v

Indice general

1 Introduccién

1.1 Planteamiento del problema
1.1.1 Pregunta de investigaciono
1.1.2 Propuesta de solucion

1.2 Objetivos
1.2.1 Objetivo general
1.2.2 Objetivos especificos oo

1.3 Justificaciono

1.4 Metodologia

1.5 Cronograma e

1.6 Estadodelarte
1.6.1 Compresion en dispositivos méviles

2 Marco teérico

2.1 Fundamentos mateméticoso
2.1.1 Teoria de la informacion L.
2.1.2 Codigos prefijos
2.1.3 Métodos estadisticos L

2.2 Métodos de diccionario oL
2.2.1 Algoritmos de codificacion LZ
2.2.2 Un ejemplo de compresion

2.3 Computaciéon en paraleloo
2.3.1 Importancia del paralelismo
2.3.2 Tipos de paralelismo
233 Ventajasyretos L
2.3.4 Paralelismo y la taxonomia de Flynn
2.3.5 Importancia de la taxonomia de Flynn
2.3.6 Aplicaciones relevantes
2.3.7 Aplicacion en arquitecturas de compresion L.

2.4 Matrices sistolicas en la arquitectura de hardware
2.4.1 Método seleccionado L

3 Analisis
3.1 Algoritmo LZ77 adetalle,
3.1.1 Complejidad computacional del algoritmo LZ77

L 00 0O J Ut Ut Ut Ut W W N =

INDICE GENERAL

3.1.2 Impacto en el diseno de hardware
3.2 Descripcién del hardware empleadoo
3.2.1 Caracteristicas de la tarjeta AX7TA200
3.2.2 Especificaciones técnicas del FPGA Artix-7 XC7A200T
3.2.3 Consumo energético y rendimiento térmico
3.2.4 Velocidad de operacion y latencia 0oL
3.2.5 Escalabilidad y aplicaciones
3.3 Desarrollo de modelo general
3.3.1 Definiciéon de casos de pruebao
3.4 Especificacion de requerimientos del sistema
3.4.1 Requerimientos funcionales L.
3.4.2 Requerimientos no funcionales,
3.5 Propuesta: Compresor con ventana deslizante
3.5.1 Ejemplo de comparaciones y salidas
3.5.2 Diccionario dindmicoo
3.6 Descripcion del algoritmo de compresion en hardware
3.6.1 Modulos y funcionalidades 0oL
3.6.2 Maquinadeestados
3.6.3 Optimizaciones y rendimiento
3.7 Descripcion del algoritmo de descompresion en hardware
3.71 Maquinadeestados
3.7.2 Implementacion y funcionalidad
3.8 Construccion de la lista de funcionalidades
3.8.1 Preprocesamiento de datos
3.8.2 Gestion de condiciones de busqueda
3.8.3 Bisqueda de coincidencias L
3.8.4 Bloque de decision de coincidencias
3.8.5 Generador de codigo comprimido
3.9 Planeacion por funcionalidades oL
3.9.1 Diseno y desarrollo de modulos (Septiembre - Diciembre)
3.9.2 Integracion y validacion (Enero - Junio)

4 Diseno

4.1 Diseno de matriz sistolica Lo

4.1.1 Elementos de procesamiento
4.2 Mobdulo de preprocesamiento de datoso
4.3 Modulo de gestion de condiciones de bisquedao
4.4 Modulo de buisqueda de coincidencias

4.4.1 OperacionesdelosePs
4.5 Modulo de decisiéon de coincidencias
4.6 Modulo generador de codigo comprimido o000
4.7 Especificaciones de entradas y salidas para los modulos de la arquitectura .

5 Construccion
5.1 Modulo de preprocesamiento de datos

VI

33
33
34
34
35
35
35
36
37
39
39
39
40
42
43
46
47
47
47
48
48
49
49
20
51
51
o1
o1
o1
52
52

53
53
%)
57
57
29
60
61
62
63

64

INDICE GENERAL VII

5.2 Modulo de gestion de condiciones de busqueda 65
5.2.1 Estructura del médulo e implementacién en verilog 65
5.3 Moddulo de bisqueda de coincidencias 65
5.3.1 Especificaciones 66
5.4 Modulo de decision de coincidenciaso 66
5.5 Generador de codigo comprimidoo oL 67
6 Pruebas 68
6.1 Conjunto de datos 68
6.2 Dispositivos a compararo 70
6.2.1 Consideraciones sobre el tiempo medido en dispositivos Android . . 70
6.3 Pruebas en simulaciono o000 71
6.3.1 Conversion de frecuencia a periodo 72
6.3.2 Comparativa con Calgary Corpus 72
6.3.3 Comparativa con Canterbury Corpus 73
6.3.4 Comparativa con Silesia Corpus 75
6.4 Pruebas en tarjeta de desarrolloo 76
6.4.1 Configuracion y uso de relojes diferenciales en FPGA 76
6.4.2 Tarjeta SD 7
6.4.3 Implementacion del acceso al sistema de archivos FAT y FAT16 . . 80
6.4.4 Depuracion de arquitectura mediante el Analizador Logico Integrado
(ILA) . o 83
6.4.5 Comparativa con Calgary Corpus 84
6.4.6 Comparativa con Canterbury Corpus 85
6.4.7 Comparativa con Silesia Corpus 86
6.5 Consumo energético. 88
6.5.1 Analisis del consumo de potencia 88
6.5.2 Distribucién de potencia por componente en chip 88
6.5.3 Distribucion por dominio de alimentaciéon 88
6.5.4 Distribucion jerarquica del consumo en el diseno 89
6.5.5 Analisis térmico de la arquitectura 89
6.5.6 Medicion fisica 90
6.5.7 Analisis comparativo del consumo energético 90
6.5.8 Analisis del tiempo empleado L. 91
6.5.9 Discusion de resultadoso 93
7 Conclusiéon 94
7.1 Respuesta a la pregunta de investigacion 95
7.2 Trabajoa Futuro 96
A Anexo 98
A.1 La Desigualdad de Kraft-McMillan, 98
A2 Codigo fuente 99

A.3 Esqueméticos de diseno de arquitectura 102

Indice de figuras

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3

4.4
4.5
4.6

0.1
5.2

6.1
6.2

6.3
6.4

Metodologia basada en funciones, basado en (18). 7
Arbol de codificacion Shannon-Fano, elaboraciéon propia. 22
Diagrama de matriz sistolica, basadoen [1]. 28
Ejemplo de ventana deslizante, elaboraciéon propia. 30
FPGA utilizada, tomado de [2] oL 34
Diagrama de bloques basico de compresion, elaboraciéon propia. 36
Texto de ejemplo, elaboraciéon propia. 41
Diccionario propuesto, elaboraciéon propia. L. 41
Diccionario con posiciones corregidas, elaboraciéon propia. 42
Diccionario dindamico propuesto, elaboraciéon propia. 44
Diccionario dindmico bloque 1, elaboracién propia. 44
Diccionario dinamico bloque 2, elaboraciéon propia. 44
Diccionario dindmico pequenio con bloque 1, elaboraciéon propia. 46
Diccionario dindmico pequenio con bloque 2, elaboraciéon propia. 46
Maquina de estados base de compresor, elaboraciéon propia. 48
Maquina de estados base de descompresor, elaboraciéon propia. 49
Diagrama de bloques de arquitectura inicial, elaboracion propia. 50
Diagrama de bloques de arquitectura corregido, elaboraciéon propia. 50
Diagrama de arquitectura propuesta, elaboraciéon propia. 53
Diagrama de mo6dulo de preprocesamiento, elaboraciéon propia. 57
Diagrama de modulo de gestion de condiciones de busqueda, elaboracion

PrOPia. . . . o o oo 58
Diagrama de moédulo de buisqueda de coincidencias, elaboracion propia. . . 59
Diagrama de moédulo de decisiéon de coincidencias, elaboracion propia. . . . 61

Diagrama de modulo de generador de c6digo comprimido, elaboraciéon propia. 62

Diseno RTL de elemento de procesamiento, elaboraciéon propia. 66
Matriz sistolica de la arquitectura, elaboracion propia. 66
Diagrama de funcionamiento PLL, elaboracion propia. 7
Definicion de pines SPI para tarjeta SD (izquierda) y SD (derecha), basado

en [3]. .. 7
Escritura de multiples bloques hacia tarjeta SD, basado en [4]. 79
Arquitectura para manejar tarjeta SD, basadoen [4]. 79

VIII

INDICE DE FIGURAS IX

6.5
6.6
6.7

Al

A2

Maquina finita de estados para manejar tarjeta SD, elaboraciéon propia. . . 81
Acceso a SD correcto, elaboraciéon propia. 83
Consumo energético de arquitectura propuesta, elaboraciéon propia. 89

Esquematico de diseno de arquitectura propuesta con entrada desde tarjeta
SD, elaboraciéon propia. Lo 103

Esquematico de diseno de arquitectura propuesta, elaboracion propia. . . . 104

Indice de tablas

1.1 Comparacion de velocidad de dispositivos méviles y procesadores, adaptado

de [B] . o o 3
1.2 Cronograma - 2 semestre (B2024), elaboracion propia. 8
1.3 Cronograma - 3 semestre (A2025), elaboracion propia.. 8
1.4 Cronograma - 4 semestre (B2025), elaboracion propia. 8
1.5 Comparacion de algoritmos de compresion, tomado de [6]. 10

2.1 Comparacién entre compresion sin pérdida y con pérdida, elaboracion propia. 16

3.1 Valores ASCII de los caracteres de ejemplo, elaboracién propia. 41
3.2 Decision con seis simbolos, elaboracion propia. L. 43
3.3 Entrada completa, elaboraciéon propia. 44
3.4 Entrada completa con diccionario dinamico pequeno, elaboraciéon propia. . 45
4.1 Segmentos en los que se divide el diccionario, elaboracién propia. 54
4.2 Entradas y salidas de los modulos, elaboracion propia. 63
6.1 Resumen de rendimiento y consumo en Samsung 524 Ultra, basado en [7]. 71
6.2 Comparacion Calgary Corpus en simulacion, elaboraciéon propia. 73
6.3 Comparacion Canterbury Corpus en simulacion, elaboraciéon propia. 74
6.4 Comparacion Silesia Corpus en simulacién, elaboracion propia. 75
6.5 Modos de operacion disponibles en tarjetas SD, basadoen [8]. 79
6.6 Comparacion Calgary Corpus en tarjeta fisica, elaboracién propia. 85
6.7 Comparacion Canterbury Corpus en tarjeta fisica, elaboracion propia. . . . 86
6.8 Comparacion Silesia Corpus en tarjeta fisica, elaboraciéon propia. 87
6.9 Distribucion de corriente por dominio de alimentacion, elaboracion propia. 89
6.10 Comparacion del consumo energético entre simulaciéon y medicion fisica. . . 91
6.11 Comparacion de rendimiento: Arquitectura propuesta vs. Samsung S24 Ul-

tra, elaboracion propia. 91

Capitulo 1

Introduccion

En la actualidad, el mundo se encuentra rodeado de dispositivos que generan datos
digitales constantemente. Desde los teléfonos moviles hasta los automoviles, los electro-
domésticos inteligentes o los equipos médicos, todos estos aparatos producen y procesan
informacion a un ritmo impresionante. Sin embargo, muchos de ellos enfrentan limitaciones
como el espacio, el peso y el consumo energético, lo que hace que no siempre sea practico
usar procesadores genéricos disenados para todo tipo de tareas. En este contexto, las so-
luciones de hardware dedicado estan ganando protagonismo. Por ejemplo, un refrigerador
puede usar sensores especificos para medir el nivel de agua o un automaévil puede depender
de componentes dedicados para gestionar su sistema de frenos. Estas soluciones no solo
mejoran el rendimiento, sino que optimizan los recursos disponibles, lo cual es clave en
dispositivos pequenos y de bajo consumo. Lo mas interesante es que estas tecnologias no
estan limitadas a laboratorios o proyectos de alta tecnologia. Muchas de las cosas que
se usan a diario ya dependen de microcontroladores y otros componentes dedicados para
tareas como encender una pantalla, controlar un robot en una fabrica o monitorear signos
vitales en un hospital.

El presente trabajo explora una arquitectura de hardware basada en la teoria de matri-
ces sistolicas, que ofrece una combinacion eficiente de potencia de procesamiento y flexibi-
lidad. Estas arquitecturas son especialmente ttiles en tareas repetitivas como la bisqueda
y comparacion realizada en la compresion de datos digitales, donde se busca reducir el
espacio que ocupan los archivos sin perder informacién importante. Un ejemplo préctico
seria un teléfono movil que almacena mas fotos o videos sin sacrificar espacio, gracias a
que usa hardware disenado para comprimir y descomprimir datos de manera répida y efi-
ciente. A lo largo de la historia se han propuesto y utilizado ampliamente muchas técnicas
de compresion de datos sin pérdidas, por ejemplo, el codigo Huffman [9], codigo aritmético
[10] y algoritmos de Lempel-Ziv (LZ) [11]. Diferentes arquitecturas de hardware, incluida
la memoria de contenido direccionable [12], matriz sistolica [13], entre otras, se han pro-
puesto. Con ello se han presentado varias realizaciones de hardware de LZ y sus variantes.
Algunas hasta han sido patentadas [14],

Para las pruebas del disenio propuesto se utiliza una plataforma FPGA, que es un dis-
positivo reconfigurable. Esto permite probar y ajustar el diseno de hardware sin necesidad
de fabricarlo desde cero, reduciendo costos y acelerando el desarrollo. Motivado por llegar
a ser integrado en dispositivos moviles a futuro, para hacerlos més eficientes y capaces.

CAPITULO 1. INTRODUCCION 2

En un mundo donde cada byte de informacion cuenta, esta propuesta representa un paso
importante para afrontar los retos del presente y colaborar en el futuro. Con tecnologias
como esta, se abre la posibilidad de transformar no solo los dispositivos actuales, sino
también la forma en que se maneja la enorme cantidad de datos producidos.

1.1. Planteamiento del problema

En la era actual, el acceso y la generacion de informacion digital han alcanzado niveles
sin precedentes gracias al avance de tecnologias como el Internet, los dispositivos madviles,
las redes sociales, la domoética e incluso los propios sistemas operativos que utilizan estos
dispositivos. Este ecosistema ha provocado un incremento exponencial en la cantidad de
datos digitales generados (en adelante, simplemente "datos"), que deben ser transmitidos
entre dispositivos y almacenados para su consulta o uso futuro. Estudios recientes revelan
que el 90 % de los datos actuales han sido generados en los tltimos dos anos. En 2023, la
generacion global de datos alcanzo los 120 zettabytes y se espera que en 2025 ascienda a
181 zettabytes [15]. [16, 17| Este crecimiento plantea desafios importantes, especialmente
en paises como México, que, tomando de ejemplo, se tienen 172 centros de datos, ocupando
el puesto 12 en generacion de datos a nivel mundial, por delante de paises como India (152)
y Espana (143). Respecto a los dispositivos celulares, de acuerdo con INEGI [18, 19| en
el mismo periodo, 97.2 millones de personas usaban un teléfono celular en México, repre-
sentando el 97.1 % de personas que se conectan a Internet. A pesar de este panorama, la
infraestructura de conectividad presenta limitaciones significativas: en 2023, la velocidad
promedio de descarga en México fue de 60.28 Mbps para conexiones de banda ancha fija y
de 25.26 Mbps para datos moviles, ubicdndose en los puestos 69 y 80 a nivel global, respec-
tivamente [20, 21]. El almacenamiento y la transmision de datos, tanto a nivel global como
en México, enfrentan un aumento constante en la demanda, superando la capacidad pro-
medio de transmision disponible. Esta disparidad se agrava en los dispositivos méviles, que
deben balancear limitaciones de tamano, peso, consumo energético, poder de computo, en-
tre otros. Estas caracteristicas que se debe tener en cuenta al disenar con orientacion a los
dispositivos moviles, dificultan el manejo de datos mediante soluciones basadas iinicamente
en software, considerando la necesidad de tener enfoques mas dedicados. [5] Actualmente,
las estrategias para superar estas limitaciones incluyen, por un lado, la transferencia de
operaciones intensivas a la nube mediante Internet, y, por otro, el uso de aceleradores de
hardware disenados especificamente para tareas particulares en dispositivos méviles. Entre
estos extremos existen soluciones intermedias, como aceleradores de hardware programa-
bles, que ofrecen flexibilidad y eficiencia en diversas aplicaciones. El avance tecnologico
impulsado por la Ley de Moore ha beneficiado de forma desigual a los dispositivos méviles
y a los dispositivos fijos, dejando en evidencia las brechas de capacidad de procesamiento
entre ambos (ver tabla 1.1), donde se observa que, aun comparando los celulares de gama
alta contra el promedio de procesadores de uso doméstico, sigue existiendo una brecha
entre las prestaciones que pueden ofrecer cada uno. Siendo los dispositivos moviles en la
actualidad muy capaces en comparacién con hace 20 anos o tan solo 10 anos, pero los
usuarios también cada vez esperan un mayor desempeno contenido en un menor tamano,
por ejemplo, el reconocimiento de voz, o fotografias con gran cantidad de datos tomadas

CAPITULO 1. INTRODUCCION 3

en una fraccion de segundo. Estos desafios resaltan la necesidad de hardware especifico y
disenado con las mejores técnicas posibles.

Tabla 1.1: Comparacion de velocidad de dispositivos méviles y procesadores, adaptado de

[5]

Computadora tiy Dispositivo moévil tipico ‘ Ano

Procesador V

oC Dispositivo Velocidad
Intel Core 2 Duo E6600 | 4.8 GHz (2 cores)

Apple iPhone 412 MHz 2007
Intel Core 15-2500K 13.2 GHz (4 cores) Samsung Galaxy S2 2.4 GHz (2 cores) | 2011
Intel Core 15-3570K 13.6 GHz (4 cores) Samsung Galaxy S4 6.4 GHz (4 cores) | 2013
Intel Core i5-6600K 14 GHz (4 cores) Samsung Galaxy S7 7.5 GHz (4 cores) | 2016

AMD Ryzen 5 1600 | 38.4 GHz (12 cores) Google Pixel 2 17.4 GHz (8 cores) | 2017
AMD Ryzen 5 3600 | 43.2 GHz (12 cores) Samsung Galaxy S20 18.46 GHz (8 cores) | 2020
AMD Ryzen 7 5700X | 54.4 GHz (16 cores) | Samsung Galaxy S24 Ultra | 22.89 GHz (8 cores) | 2024

En investigaciones realizadas, se ha demostrado que los circuitos integrados de apli-
cacion especifican (ASIC) pueden ayudar a contrarrestar las limitaciones presentes en los
dispositivos moviles [22], logrando tareas como la inferencia en el aprendizaje profundo 23]
o la superresolucion de imagenes [24]. Estos avances demuestran el potencial del diseno de
hardware enfocado en problemas especificos.

Dado el aumento en la generaciéon de datos y las limitaciones de conectividad y alma-
cenamiento, es necesario tener en cuenta soluciones mas eficientes. Este trabajo se centra
en el diseno de una propuesta de compresion de datos en hardware, con el objetivo de
ayudar a mitigar el uso del ancho de banda y almacenamiento en la actualidad y ser parte
de la base de soluciones utilizadas en el futuro. Se busca generar una solucién mediante
hardware especifico en compresion de datos para mejorar el uso de los recursos limitados
disponibles.

1.1.1. Pregunta de investigaciéon

..Como se puede mejorar la utilizacién de hardware dedicado para comprimir archivos
de texto sin pérdida?

1.1.2. Propuesta de solucién

El incremento en la generacion de datos requiere estrategias que combinen eficiencia
y rendimiento. Para abordar esta problematica, se propone una arquitectura de hardware
de compresion sin pérdida basada en el algoritmo LZ77, utilizando matrices sistolicas
y presentada en un dispositivo de desarrollo de hardware (FPGA). Esta solucién busca
aprovechar en lo posible de mejor forma los recursos disponibles, con la motivacion que en
el futuro pueda llegar a ser implementado en dispositivos méviles, liberando al procesador
principal de tareas intensivas de compresion y descompresion. A continuacion, se detalla
brevemente los aspectos clave de la propuesta a desarrollar.

1. Estrategia de compresion

a) Algoritmo base: LZ77 se seleccion6 por su forma de funcionamiento, identifican-
do patrones en los datos para reducir el tamano de la informacién eliminando la

CAPITULO 1. INTRODUCCION 4

redundancia, todo ello sin perder informaciéon en el proceso. Su implementacion
en hardware permite paralelismo a nivel de bits.

b) Implementacién en matrices sistolicas: Generan una estructura eficiente para
la implementacion del algoritmo basado en LZ77. Cada celda en la matriz se
disena para realizar operaciones de comparacion y desplazamiento de patrones,
Se busca optimizar la biusqueda y comparacion de los datos.

2. Arquitectura de hardware

a) Unidad de compresion: Disenada como un modulo especifico dentro del FPGA,
se encarga de aplicar el algoritmo LZ77 mediante una configuraciéon paralela.

b) Procesamiento en paralelo: El diseno utiliza una matriz sistolica para procesar
el texto, para maximizar el rendimiento y reducir la latencia.

c) Gestion de memoria: Se utilizan buffers para manejar segmentos de datos y
disminuir el acceso a memoria externa, mejorando la eficiencia energética y
reduciendo los tiempos de espera.

3. Tarjeta de desarrollo

a) Se selecciono un FPGA por su flexibilidad y capacidad de re-configuracion para
realizar pruebas del diseno, sin requerir la fabricaciéon y los recursos que ello
conlleva. El diseno inicial utiliza hardware de pruebas compatible con lenguajes
de descripcion de hardware (VHDL/Verilog).

a) Ventajas: Flexibilidad para ajustar el diseno y corregirlo, escalable y se pue-
de configurar de formas diferentes, posibilidad de reutilizar bloques en futuros
disenos.

4. Estrategia de validacion

a) Simulacion y verificacion: Se utilizardn herramientas especificamente desarro-
lladas para diseno de hardware, en este caso Vivado de AMD para sintetizar el
diseno y simular su comportamiento frente a diferentes entradas de datos.

b) Rendimiento: Comparacién de rendimiento entre soluciones de software y la
implementacién en hardware. Se busca validar una mejora en la velocidad de
compresion entre el 20 % y 47 % [25].

¢) Métricas de evaluacion:

1) Latencia: Tiempo empleado en comprimir bloques de datos.
2) Eficiencia Energética: Consumo energético comparado con soluciones pura-
mente de software.

3) Rendimiento: Capacidad de procesar datos en paralelo y que tasas de com-
presion se alcanzaron.

CAPITULO 1. INTRODUCCION 5

1.2. Objetivos

1.2.1. Objetivo general

Disenar una arquitectura de hardware especializada en compresion de texto sin pérdida,
basada en LZ77, empleando matrices sistolicas.

1.2.2. Objetivos especificos

1. Analizar los algoritmos de compresion de texto, considerando sus limitaciones, be-
neficios, eficiencia y rendimiento.

2. Comparar y seleccionar una técnica para implementar la compresion de texto en
hardware, contemplando la eficiencia, rendimiento y adaptabilidad.

3. Disenar una arquitectura de hardware que integre los elementos necesarios para la
configuracion de una matriz sistélica, enfocada en compresion de texto sin pérdida.

4. Validar la arquitectura disenada de compresion sin pérdida, comprobando tasa de
compresion, tiempo de procesamiento y parametros de energia.

1.3. Justificaciéon

El crecimiento sostenido del volumen de datos digitales, impulsado por la accesibilidad
a la creacion, almacenamiento y comunicacion mediante dispositivos moviles, las redes
5@G, los dispositivos IoT (Internet of Things en inglés), redes sociales, inteligencia artificial
(IA) y dispositivos auténomos, entre otros, han generado un incremento considerable en el
namero de dispositivos que aportan y transmiten datos [20], [21]. Este aumento de datos
digitales conlleva un incremento en los costos, la complejidad y el consumo energético
requerido para almacenar o transmitir los datos.

El incremento de datos digitales ha transformado las necesidades de infraestructura
tecnologica. En México, las carencias respecto al ancho de banda y almacenamiento con-
trastan con el crecimiento exponencial en la generaciéon de datos, que alcanzéd los 120
zettabytes en 2023 y se proyecta a 181 zettabytes para 2025 a nivel mundial [15].

Estas cifras son evidencia de que la capacidad de transmisiéon y almacenamiento de
datos no puede mantenerse al ritmo de la generacién de informacion. Con ello, el diseno
de hardware dedicado para compresion de datos surge como una solucion, especialmente
en dispositivos moviles, que son el principal medio de acceso a Internet, representando el
97.1 % de la poblacion que se conecta a Internet en el pais [18].

Se ha investigado ampliamente en el campo de la compresion de datos [25], [26]. Esta
técnica busca reducir el tamano de los datos, mejorando asi la eficiencia del almacenamien-
to y reduciendo los requisitos de ancho de banda para la transmisiéon. De forma general se
puede clasificar en dos grandes vertientes, compresién con o sin pérdida, dependiendo de
los requisitos de integridad de los datos. La compresion con pérdida supone que se puede
tolerar cierta degradacion en los datos, como ocurre con los archivos de audio en formato

CAPITULO 1. INTRODUCCION 6

MP3, donde la disminucion de calidad no es tan evidente para el oido humano. En con-
traste, la compresion sin pérdida se utiliza cuando es fundamental mantener la integridad
de los datos, como en los archivos de texto, donde perder un solo caracter puede causar
errores en la interpretacion del contenido o incluso dejar ilegible el documento. También
se debe tener claro que la vida diaria esté rodeada de dispositivos de hardware dedicados
y que de hecho son esenciales para las tareas comunes, por ejemplo, los microcontrolado-
res que manejan la salida a pantalla de los televisores, la mediciéon del nivel de agua en
refrigeradores, la unidad de control del motor (ECU) en los autos, el control de robots
en lineas de ensamblaje, dispositivos médicos y de seguridad, entre otros. Considerando
solo hardware dedicado a compresion de datos, companias como Microsoft, Broadcom,
AMD, ARM o Cadence, estéan trabajando en ello [27]. La motivacion del presente trabajo
es llegar a ser utilizado en dispositivos moviles en el futuro, ya que tienen la penalizacion
por su misma naturaleza en sus limitaciones de tamano, peso, y consumo energético, lo
cual se traduce en un poder computacional significativamente menor en comparacién con
dispositivos estaticos. [5] Aunque estrategias como el offloading a nubes o cloudlets han
sido exitosas, la implementacion de aceleradores de hardware en los propios dispositivos
moviles, como ASICs (Application-Specific Integrated Circuits), ofrece diversas ventajas,
incluyendo baja latencia, operaciéon en condiciones desconectadas y eficiencia energética
superior. No obstante, el diseno e implementacion de dispositivos de hardware especificos
tiene ciertas barreras que en soluciones por software no existen, los méas destacables son
los altos costos de desarrollo y la falta de flexibilidad para realizar miltiples aplicaciones
o realizar mejoras o correcciones.

En México, la conectividad limitada y la velocidad promedio de descarga, que ocupa
los puestos 69 y 80 a nivel mundial para banda ancha fija y datos moviles respectivamente
[20, 21], amplifican la necesidad de soluciones locales para la compresion de datos. El
desarrollo del diseno de la arquitectura de compresion se planea para reducir el volumen
de datos que la informaciéon utiliza tanto para poderse transmitir como para almacenarse
en los dispositivos y liberar recursos en el procesador principal para otras tareas menos
repetitivas o con necesidad mas inmediata.

Ademas, optar por investigaciéon en hardware disenado para tareas especificas, no solo
considera las necesidades inmediatas, sino que posiciona a México como un participante
activo en la creacion de soluciones escalables y eficientes frente a los retos globales que la
creciente generacion de datos crea.

En este contexto, surge el interés por el desarrollo de diseno de hardware dedicado
en la compresion sin pérdida, aunque, por el tiempo y recursos que requiere la puesta en
marcha de un hardware de propoésito especifico, se utiliza una arquitectura intermedia para
realizar pruebas del diseno propuesto.

El diseno de una arquitectura de hardware de compresion basada en algoritmos como
LZ77, implementada en plataformas FPGA, representa un paso crucial hacia una gestién
de datos mas eficiente en dispositivos moviles. Esta propuesta no solo aborda los retos
actuales, sino que sienta las bases para la evolucion tecnolégica en México, aprovechando
las ventajas de los aceleradores de hardware para mejorar el rendimiento y disminuir el
consumo energético en un entorno de creciente generacion de datos en dispositivos moviles.

CAPITULO 1. INTRODUCCION 7

1.4. Metodologia

La metodologia planeada para utilizarse a lo largo de este desarrollo principalmente
es la basada en investigacion tedrica, ya que se centra en la creacion y evaluacion de
teorias o modelos que describen y explican fenémenos en ciencias de la computacion.
En términos generales, se ha distinguido la teorfa como lo opuesto a la practica [28].
La investigacion teorica, utiliza la forma de pensar e investigar en biisqueda de soluciones
mediante la imaginacion, abstraccion, deduccion; con ello desarrolla explicaciones o teorias
sobre fenomenos. Se fundamenta en la corriente racionalista y es propia de las ciencias
formales cuyos objetos de estudio son ideales o intangibles, como la matematica, logica,
fisica teorica o lingiiistica. Las técnicas incluyen la formulacion de hipotesis, la construccion
de modelos y la evaluacion logica. De esta forma se hard uso de lenguajes de diseno de
hardware, especificamente de lenguajes de descripcién de hardware, de los cuales se usan
ampliamente VHDL y Verilog a nivel escolar e industrial. Teniendo en cuenta herramientas
para analizar y corroborar los datos, como Vivado de AMD), el cual provee un entorno
para diseno de tanto entradas como salidas, sintesis, logica de las senales, verificacion y
simulacion; siendo totalmente compatible con el hardware propuesto para la realizacion de
este trabajo. Guiado por la metodologia principal, se pretende utilizar para casos especificos
en la prueba de concepto [29], [30], la metodologia basada en funciones (Feature Driven
Development) que ayuda a dimensionar y priorizar las actividades, dando prioridad a las
funcionalidades més criticas. Consiste en cinco procesos, que proveen los métodos, técnicas
y guias necesarias, los cuales se muestran en la siguiente figura.

Desarrollar un
modelo
general

Construir una
lista de
funcionalidades

Y

Planear por
funcionalidades

y

Disenar por
funcionalidad

Construir por
funcionalidad

Figura 1.1: Metodologia basada en funciones, basado en (18).

La eleccion de estas metodologias se basa en el interés de estructurar el trabajo, ya que
se realizara una investigacion con enfoque a nivel teoérico, de la cual se realizara una prueba
de concepto en hardware, sustentada en teorias ya documentadas, asi como desarrollar
nuevo trabajo a partir de ellas, con la experimentaciéon guiada con funciones puestas en
marcha.

Como se puede apreciar, la metodologia basada en funciones comienza con un modelo
general que se va refinando proceso a proceso hasta llegar a su culminacion. Parte de interés
del uso especifico de esta metodologia recae en que las tltimas dos fases son iterativas.
Dando como resultado un mejor manejo de los pormenores que surjan en las fases que mas
trabajo requieren del sistema a desarrollar [30], [31], [32]. Para las etapas de representacion
de la arquitectura propuesta, por facilidad de comprension se utilizan diagramas de bloques
para visualizacion de las etapas por las que pasan las senales que representan la informacion
procesada [33].

CAPITULO 1. INTRODUCCION 8

1.5. Cronograma

El cronograma se dividi6é por semestres, para una facil lectura, se consideraron a grandes
rasgos las actividades de mayor importancia para el diseno de la arquitectura de hardware,
los apartados de investigacion y el desarrollo de este. Se considero el ajuste en lo posible
con las vacaciones que hay entre ellos.

Tabla 1.2: Cronograma - 2 semestre (B2024), elaboracion propia.
Actividad Febrero Marzo | Abril Mayo | Junio
Definicion del tema y objetivos de la tesis
Revisiéon de literatura
Analisis comparativo
Familiarizacion con herramientas de diseno
Redaccion de tesis (Capitulo 1 y 2)
Revision con comité tutorial

A(tlndad Septlemble Octubre No\ iembre Diciembre Enelo

Diseno preliminar
Disefio de arquitectura
Integracion de arquitectura
Implementacion en hardware
Redaccion de tesis (Capitulo 3)
Revisién con comité tutorial

Tabla 1.4: Cronograma - 4 semestre (B2025), elaboracion propia.
Actividad ‘ Febrero ‘ Marzo ‘ Abril ‘ Mayo Junio
Simulacién -

Implementacion del diseno en hardware - ‘

Desarrollo de la prueba de Concepto ‘ ‘--

Optimizacion --
Redaccién de tesis ‘ ‘
Revisién con comité tutorial

1.6. Estado del arte

En la actualidad, existe una amplia variedad de propuestas de compresion de datos,
desarrolladas tanto por instituciones académicas como por grandes empresas tecnologicas,
como Microsoft y Google. En particular, Google ha hecho publico el trabajo realizado en
el desarrollo de al menos cuatro algoritmos de compresion basados en el algoritmo LZ77.
Uno de estos algoritmos es Snappy [34], el cual ha sido de codigo abierto desde 2011, y su
version mas reciente (1.2.1) fue lanzada en mayo del afio 2024. Snappy es una biblioteca

CAPITULO 1. INTRODUCCION 9

especializada en la compresion y descompresion de datos, no esté disenada con el objetivo
de alcanzar la maxima compresion ni de ser compatible con otras bibliotecas de com-
presion, sino en lograr velocidades extremadamente altas con una compresion razonable.
Comparada con el modo més rapido de Zlib, Snappy es aproximadamente diez veces més
rapida en la mayoria de los casos, aunque los archivos comprimidos resultantes pueden ser
entre un 20 % y un 100 % mas grandes. Tomando en consideracion el rendimiento, Snappy
esta disenado para ser extremadamente rapido. En un solo nticleo de un procesador Core
i7 en modo de 64 bits, puede comprimir datos a aproximadamente 250 MB/s o maés, y
descomprimirlos a alrededor de 500 MB/s o més (a modo de comparacion, Zlib (Deflate)
comprime a 74 MB/s en su configuraciéon mas rapida y a 24 MB/s con la configuracion
predeterminada). Estos valores corresponden a las entradas méas lentas en su conjunto de
pruebas, aunque este aumento de velocidad se logra a expensas de la relaciéon de compre-
sion, ya que la relacion de compresion de Snappy es entre un 20 % y un 100 % menor que la
de Zlib. En sus evaluaciones, Snappy supera en velocidad a otros algoritmos de compresion
similares (como LZO, LZF, QuickLZ, etc.), manteniendo tasas de compresion comparables.
Las tasas de compresion tipicas, basadas en su conjunto de pruebas, son aproximadamente
1.5 a 1.7 veces para texto sin formato, de 2 a 4 veces para HTML, y 1.0 vez para archivos
JPEG, PNG y otros datos ya comprimidos. En comparaciéon, Zlib en su modo més rapido
ofrece tasas de 2.6-2.8x, 3-7x y 1.0x respectivamente. Algoritmos més avanzados pueden
alcanzar tasas de compresion superiores, aunque generalmente a costa de una menor veloci-
dad. Es importante destacar que la relacién de compresion puede variar significativamente
segin el tipo de datos de entrada. Aunque Snappy es bastante portétil, esta optimizado
principalmente para procesadores x86 de 64 bits y puede rendir de manera menos eficiente
en otros entornos y los algoritmos de compresion rapida como Snappy son tan rapidos que
las operaciones de E/S pueden ser el cuello de botella del algoritmo. Una de las ventajas
inherentes de utilizar matrices sistolicas en el proyecto a desarrollar. El segundo algoritmo
desarrollado por Google es nombrado Gipfeli [35], el cual es un algoritmo de compresion
de alta velocidad que utiliza referencias hacia atras con una ventana deslizante de 16 bits.
Esta basado en el trabajo de Lempel y Ziv de 1977, y se ha mejorado con una codifi-
cacion de entropia ad-hoc tanto para literales como para referencias hacia atras. Esta
implementado en C+-, en palabras de sus desarrolladores, esta optimizado para lograr un
rendimiento excepcionalmente alto, aunque es aproximadamente un 30 % mas lento que
Snappy, pero logra un 30 % maés de relacion de compresion. La tasa de compresion que
ofrece es comparable a la de Zlib en su modo mas rapido, pero Gipfeli es aproximadamen-
te tres veces mas rapido. Esto lo convierte en una solucion ideal para numerosos sistemas
con limitaciones de ancho de banda, almacenamiento temporal de datos y procesamiento
paralelo. Respecto al tercer algoritmo desarrollado por Google, es conocido como Zopfli
[36]. El proposito de Zopfli es comprimir datos en el formato Deflate (basado en LZ77 par-
cialmente) con una eficiencia superior a la de implementaciones tradicionales como gzip y
Zlib. Concretamente, Zopfli logra generar archivos comprimidos entre un 3.7 % y un 8.3 %
mas pequenos en comparacion con gzip utilizando la opcién —best. Sin embargo, el tiem-
po requerido para su ejecucion es significativamente mayor, siendo aproximadamente cien
veces mas lento que gzip. Ya que el formato de datos que espera y general el algoritmo
LZ77 es muy utilizado en la industria, también los datos comprimidos con Zopfli se pueden
integrar en las aplicaciones sin problemas de compatibilidad. Un uso destacado de Zopfli

CAPITULO 1. INTRODUCCION 10

se encuentra en la web, donde se pueden comprimir las paginas estaticas, y el navegador al
momento de visualizarlas las descomprime. Aunque la mejora en los tiempos de carga para
el usuario final puede pasar desapercibida, en los dispositivos moéviles, estas optimizaciones
pueden notarse al tener un menor consumo energético. Otro uso que puede tener Zopfli
es en las imdgenes PNG, ya que también utilizan el algoritmo LZ77, lo cual se traduce
en ahorros significativos en la transmision de datos, dado el gran uso de PNG en la web.
Sin embargo, debido a su bajo rendimiento en términos de velocidad, Zopfli podria no ser
adecuado para la compresion de contenido personalizado. Respecto al tltimo algoritmo de
Google, es llamado Brotli [37], fue lanzado en 2015 y su ultima version publicada fue la
1.1.0 en agosto de 2023. A diferencia de su predecesor Zopfli, Brotli no esta disefiado para
ser compatible con el algoritmo LZ77. En lugar de eso, Brotli aspira a ser un reemplazo
moderno para LZ77. Dado que LZ77 es conocido por su rapidez tanto en la compresion
como en la descompresion, ademés de su razonable relaciéon de compresion, Brotli debe
igualar o superar estas caracteristicas para ser considerado un sustituto viable. Siendo un
algoritmo de compresion sin pérdidas de propoésito general que emplea una combinacion de
una variante moderna del algoritmo LZ77 y codificacion Huffman. Esto le permite lograr
una relacion de compresion comparable a los métodos de compresion de proposito general
mas eficaces disponibles en la actualidad. Ademas, aunque su velocidad es similar a la de
Deflate, Brotli ofrece una compresion significativamente méas densa. Los cuatro algoritmos
demuestran que en la préctica se sigue utilizando los algoritmos LZ, de forma pura o con
variaciones de este, no solo porque tiene un soporte completo en los sistemas actuales, sino
que es relativamente simple y réapido codificar y decodificar con él. Lo que da pie a real-
mente definir lo importante para tener en cuenta respecto a seleccién de algtin algoritmo.
Si considerar una variacion de LZ, como LZ77 por ser el estandar en el cual se basan los
demés algoritmos, o elegir alguna de las nuevas propuestas antes mencionadas. En [6] se
compardé Brotli, Deflate incluido en la biblioteca Zlib, Zopfli, LZHAM, entre otros, limitan-
do la seleccion de algoritmos a aquellos que generalmente tienen una tasa de compresion
mayor que Deflate. Cabe aclarar que los resultados de las pruebas en su gran mayoria siem-
pre dependen de las caracteristicas del hardware sobre el cual se ejecutan, pero brindan
la informacién suficiente para poder tener nociones de que parametros se deben tener en
consideracion al momento de medir el rendimiento de la propuesta. Utilizando un set de
datos estandar para poder corroborar y comprobar el funcionamiento de los compresores,
en [6] utilizaron el corpus Canterbury [38], el cual contiene 1285 archivos con un total de
70,611,753 bytes. Considerando la velocidad de compresion y el nivel de compresion (la
relacion entre el peso del archivo original y el resultante), entre otras comparaciones que
se pueden leer mas a detalle en la referencia. La tabla 1.5 muestra los resultados de dicha
comparacion.

Tabla 1.5: Comparacion de algoritmos de compresion, tomado de [6].

Algoritmo ‘ Nivel de compresion Velocidad de compresion (Mb/s) ‘ Velocidad de descompresion (Mb/s)

Deflate:1 2.913 93.5 323
Deflate:9 3.371 15.5 347.3
Brotli:1 3.381 98.3 334
Brotli:11 4.347 0.5 289.5

Zopfli 3.580 0.2 342.1

CAPITULO 1. INTRODUCCION 11

Donde, como se mencion6 antes, debido a que son algoritmos de software que dependen
del hardware, los resultados son muy dependientes del ancho de banda del almacenamien-
to utilizado, el procesador, la memoria RAM, el sistema operativo, la cantidad de otros
procesos ejecutandose, etc.. .., mas aun, el articulo fue creado por Google, por lo tanto, es
razonable entender que tiene cierta tendencia a hacer notar que el algoritmo Brotli ofrece
mejores resultados que sus contrapartes. Los resultados de la tabla 1.5 dan la oportunidad
de conocer el rendimiento promedio que tiene Deflate y sus contrapartes actuales fun-
cionando en dispositivos anfitriones de 64 bits. Los cuales se aprecia que estan limitados
principalmente por el sistema operativo, ya que, al ser un sistema de propoésito general,
tiene que asignar el tiempo a diversas tareas, disminuyendo las prestaciones que puede
ofrecer el algoritmo. Considerando la plataforma CUDA de NVIDIA, representa una via
clave para la realizacion de pruebas, gracias a la capacidad de sus GPUs para manejar
tareas computacionales de alta demanda mediante programacion paralela. Esta dependen-
cia puede ser percibida como una ventaja o una desventaja, de acuerdo con las metas
especificas de cada proyecto. CUDA ofrece un entorno con herramientas para administrar
hilos y la memoria, lo que permite aprovechar el rendimiento de las GPUs en tareas pa-
ralelas. Tomando el ejemplo de CURC [39], el cual es un compresor de datos genémicos
utilizando la GPY y CPU de forma heterogénea. CURC logra una compresion mayor que
las herramientas tradicionales basadas exclusivamente en CPUs, como SPRING, debido a
su capacidad para manejar tareas masivas de forma paralela con mayor velocidad y menor
costo computacional. CURC ofrece una velocidad de compresion entre 2.76 y 6.54 veces
mayor, vy una velocidad de descompresion hasta 2.52 veces superior en comparaciéon con
otras herramientas tradicionales, sin sacrificar la tasa de compresion. Ademas, el sistema se
puede escalar para soportar multiples GPUs, pero tener en cuenta que deben de alinearse
con la infraestructura que proporciona NVIDIA. Sin embargo, a pesar de estas ventajas,
la dependencia en cuanto a CUDA y NVIDIA plantea varios problemas. La limitacion mas
seria es la confianza total en una tnica compania para el soporte de hardware, actualizacio-
nes y todas las herramientas necesarias para el desarrollo. Este punto conllevara problemas
si NVIDIA decide que el hardware utilizado se considera obsoleto o si la compania toma
decisiones que puedan afectar la continuidad de soporte o la disponibilidad del hardware.
Asi como el hecho de que el software solo puede ser accedido por las GPUs de NVIDIA con
soporte de CUDA y tunicamente la version funcional y soportada para la GPU utilizada.

Por dltimo, es importante senalar que CUDA es una tecnologia propietaria, lo que
excluye su uso en entornos que no pueden soportarla y dificulta la portabilidad hacia otras
plataformas. Este factor puede limitar las opciones de expansion futura y restringir la
flexibilidad del proyecto.

Se disenaré en lo posible el algoritmo en hardware, ya que brinda la oportunidad de que
sea dedicado para una sola tarea, comprimir o descomprimir, dando pie a obtener mejores
resultados que los ofrecidos solo por software. Involucrando la optimizacion de la arqui-
tectura mediante matrices sistolicas, se busca afrontar el problema generado por el ancho
de banda limitado y las capacidades limitadas que se tienen en los dispositivos moéviles en
la actualidad, siendo un sustento para contribuir a un futuro de desarrollo sin depender
de tecnologia de alguna compania o técnica patentada. Involucrando al hardware, existen
varios proyectos con orientacion a utilizarlo para distintos fines en reemplazo de soluciones
via software, uno de los ellos [40], busca implementar Deflate en hardware, especificamente

CAPITULO 1. INTRODUCCION 12

en un FPGA, presentando algunos aspectos de su implementacion de hardware para los
codificadores LZ77 y Huffman, componentes clave del algoritmo Deflate. Con trabajo a
futuro de una posible integracion en sistemas de almacenamiento y comunicacion de da-
tos. Uno de los aspectos clave del algoritmo Deflate, es que brinda la opcién de utilizar
codificadores estaticos o dinamicos; estos ultimos calculan las frecuencias en funcién de
los datos de entrada; aqui es donde la mayoria de la literatura enfocada en soluciones via
hardware no cumplen con los requisitos para Deflate, ya que se ocupan solo de disenar
diccionarios estaticos. Con ello ofrece espacio para el presente trabajo y su incursion con
diccionarios dinamicos. Orientado el desarrollo de hardware en la arquitectura utilizada,
se puede buscar implementar el algoritmo Deflate de forma directa, pero esto no aprove-
charfa en lo posible los recursos que ofrece el FPGA, en [41] se analiza la implementacion
de hardware del algoritmo de compresion de datos Lempel-Ziv (LZ), enfatizando su im-
portancia en las comunicaciones y el almacenamiento de datos de alta velocidad. Explora
varias arquitecturas de hardware de compresion LZ, como la memoria direccionable de
contenido (CAM), la matriz sistolica, y compara su eficiencia en términos de velocidad,
costo de hardware y capacidad. Se introduce una nueva técnica paralela basada en matrices
sistolicas para implementar el algoritmo LZ centrada en mejorar la latencia y la eficiencia.
Ademas, incluye un anélisis del efecto de la longitud del buffer de entrada en la relacion
de compresion y presenta una implementacion FPGA de la técnica propuesta para la com-
presion y descompresion sobre la marcha. La implementacion propuesta se describe como
eficiente en area y velocidad. Da informacion sobre como seleccionar la longitud del bufer
para una relaciéon de compresion 6ptima, mostrando las implicaciones de la relacion entre
la longitud del bufer y la eficiencia de la compresion. Parte importante para este trabajo
es que realiza una comparacion de disenos de matrices sistolicas, ofreciendo los resultados
de la implementacion del disenio utilizando un FPGA de XILINX, lo que demuestra el
potencial de mejoras significativas en la tasa de compresion y la eficiencia. Asi como existe
desarrollo en compresion via software por parte de grandes companias como Google, tam-
bién se tiene interesen soluciones por hardware. Debido a que la compresion es algo esencial
en la busqueda del manejo de datos, considerando los niveles de generacion de datos que
se tiene actualmente. Existe documentacion de un proyecto de 2019 [28], donde estan in-
volucrados diversas companias como Intel, AMD, ARM, Broadcom, cadence, synopsys,
entre otros. Creando una alianza para desarrollar un algoritmo de compresion, teniendo
en cuenta la optimizacion y su implementacion en hardware para los tipos de datos comu-
nes en las cargas de trabajo de almacenamiento en la nube. Al introducir innovaciones a
nivel de sistema, mencionan haber logrado alcanzar mayores niveles de compresion, mejor
rendimiento y menor latencia en comparaciéon con los algoritmos existentes. Microsoft es
la principal compania involucrada, la cual nombra al proyecto “Microsoft’s Project Zipli-
ne” y hace mencion que los resultados tienen un nivel de compresion hasta 2 mayor en
comparacion con el modelo Zlib-1.4 de 64 KB comunmente utilizado. Mejoras como esta
pueden generar beneficios directos en la administracién de datos, tanto para las empresas
como para los usuarios finales, teniendo un potencial ahorro de costos. Microsoft menciona
que tiene un repositorio publico, donde se puede tener acceso a especificaciones de diseno
de hardware y codigo fuente de Verilog para lenguaje de transferencia de registros (RTL),
donde literalmente mencionan “con contenido inicial disponible hoy y mas préoximamente”.
Caso que lamentablemente desde esa primera y tnica publicacion en 2019, no se tiene

CAPITULO 1. INTRODUCCION 13

més informacion actualizada del proyecto. Lo cual hace pensar en que el proyecto en la
actualidad pudo haber pasado por, su abandono, debido a la alta especializaciéon su priva-
tizacion de este, entre otras posibles opciones. Dando pie a una interesante propuesta, que,
en lo posible, dado el alcance del presente trabajo y los recursos disponibles, se toma en
consideracion los proyectos relacionados que en la actualidad otros investigadores realizan
en torno a la compresion y la utilizacion de hardware en dicha tarea.

1.6.1. Compresién en dispositivos moviles

[42] Historicamente se ha tenido interés en desarrollar dispositivos moéviles con interfaces
inaldmbricas que provean comunicacion incluso mientras el usuario se mueve entre diversas
ubicaciones, en otras palabras, el desarrollo de dispositivos que eliminen las restricciones
de tiempo y espacio impuestas por las computadoras de escritorio y las redes cableadas.
Donde la computacion mévil a transformado la forma en que se tiene acceso continuo a
servicios y recursos de redes terrestres. El desarrollo de estos dispositivos debe tener en
cuenta aspectos como las comunicaciones inaldmbricas, la movilidad y la portabilidad. El
primer apartado, permite la conexion sin cables, pero enfrenta problemas como la latencia,
desconexiones frecuentes y una menor capacidad de ancho de banda en comparaciéon con
las redes cableadas. En entornos donde se tenga que depender de dispositivos méviles las
desconexiones son comunes debido a la interferencia, que a su vez hace variar el ancho
de banda y que se generen complicaciones adicionales, por lo que se necesitan estrategias
que puedan adaptarse a estas limitaciones. Considerando la portabilidad, el diseno de dis-
positivos moéviles conlleva restricciones significativas en cuanto al tamano, peso, consumo
de energia y capacidad de almacenamiento. Minimizar el consumo de energia es crucial
para prolongar la vida 1util de la bateria, mientras que la capacidad de almacenamiento
limitada obliga a emplear soluciones como la compresion de archivos y el acceso remoto
a datos. aunque la computacién movil ofrece la posibilidad de eliminar las restricciones
de tiempo y lugar impuestas por los sistemas tradicionales, plantea desafios tnicos que
requieren adaptar las estructuras y sistemas actuales para soportar esta nueva realidad.
El uso masivo de dispositivos moéviles con funciones avanzadas fue iniciado, entre otros,
con los asistentes digitales (PDA por sus siglas en ingles), concebidos como dispositivos
autocontenidos que eran parte mediante una red movil de una infraestructura de computo
mayor. Uno de sus enfoques era permitir el acceso continuo a servicios y recursos, esta
combinacion de movilidad y redes inalambricas sent6 las bases para nuevas aplicaciones y
formas de interactuar, que incluso en fechas recientes tienen gran relevancia en variedad
de areas, gracias a diferentes dispositivos creados bajo los mismos principios, como los
teléfonos inteligentes, dispositivos de Internet, tarjetas inteligentes, computadoras corpo-
rales, sensores de redes, etc... [43] La evolucion tecnologica ha impulsado el desarrollo de
procesadores més complejos, con un enfoque en la comunicacién, rendimiento y bajo con-
sumo de energia. En sus inicios, los teléfonos moviles de la primera generacion (1G) usaban
transmision analogica, que requeria més energia y admitia pocos usuarios. Con la llegada
de la segunda generacion (2G), se adoptaron los procesadores de senal digital (DSP), que
proporcionaban una arquitectura flexible y rentable. A medida que avanzo la tecnologia,
arquitecturas mas modernas como los procesadores VLIW y SIMD permitieron un me-
jor rendimiento y menor consumo de energia. Convirtiendo a los dispositivos moviles en

CAPITULO 1. INTRODUCCION 14

componentes vitales de la vida diaria, evolucionando a través de los anos con cambios sig-
nificativos en la arquitectura del procesador. Los procesadores modernos como los basados
en ARM son fundamentales para los dispositivos moéviles debido a su bajo consumo y alto
rendimiento. La tendencia actual es hacia sistemas en chip (Soc.) altamente integrados, que
combinan multiples componentes, como CPU, GPU y DSP, en un solo chip para mejorar
el rendimiento general y la eficiencia energética. En la actualidad se utilizan en diversos
dispositivos moviles procesadores como los ARM Cortex, Qualcomm Snapdragon y Nvidia
Tegra, cada uno con su enfoque particular en la eficiencia energética, rendimiento grafico
y capacidad de procesamiento con la meta de optimizarse para dispositivos que demandan
mas potencia y mayor eficiencia energética. Considerando el avance en la tecnologia, se han
realizado investigaciones en el campo, de las cuales algunas tienen mayor relevancia para el
presente trabajo, a continuacion, se presentan brevemente. En [44] se propone una arqui-
tectura de compresion de codigo disenada para mejorar el rendimiento de los procesadores
embebidos ARM/THUMB. El trabajo propone una arquitectura que reduce el tamano del
codigo y mejora el rendimiento en general del sistema. Los autores mencionan que asi se
puede disminuir el tamano de la informaciéon almacenada en la memoria caché y con ello,
también minimizar los accesos a memoria. Buscan mantener el equilibrio entre la reduccion
del codigo y la carga que se debe agregar por la accion de descomprimir, buscando que el
rendimiento del sistema se vea sin afectaciones de consideracion. Ofreciendo una solucién
eficaz para mejorar el rendimiento de los procesadores embebidos a través de la compre-
sion de codigo. El articulo [45] describe una técnica para reducir el consumo de energia
en sistemas hibridos de ARM-FPGA para comprimir datos sin pérdida. Buscan optimizar
el uso de la memoria. Al aplicar algoritmos de compresion, los autores logran reducir el
trafico de datos entre la FPGA y la memoria externa, generando un ahorro de energia
sin comprometer la integridad de los datos. El articulo también compara este método con
otras técnicas y destaca sus ventajas en aplicaciones donde el consumo de energia es un
factor critico, como en dispositivos portétiles y sistemas embebidos. Demostrando que la
compresion de datos sin pérdida aplicada a sistemas hibridos ARM-FPGA es una solucion
viable para disminuir el consumo de energia, manteniendo la eficiencia y el rendimiento
en estos sistemas avanzados. En [46] se describe el diseno y funcionamiento de Flywheel,
un proxy de compresion de datos desarrollado por Google para mejorar la navegacion web
movil. Proponen reducir el consumo de datos y mejorar los tiempos de carga, siendo de
especial interés para contrarrestar los efectos de las redes lentas o inestables. El sistema
intercepta el trafico web del usuario y comprime el contenido utilizando los servidores de
Google y de ahi los envia comprimidos al dispositivo del usuario. El articulo menciona los
problemas técnicos que tuvieron los autores, como mantener la compatibilidad con sitios
web dindmicos y cifrados, asi como la necesidad de equilibrar la compresion con la la-
tencia adicional introducida por el uso del proxy. Mostrando también el impacto positivo
del sistema en la experiencia del usuario, al reducir considerablemente el uso de datos y
mejorar el rendimiento. Por su parte [47] se centra en como mejorar la eficiencia energética
de las aplicaciones que utilizan procesamiento paralelo en arquitecturas moéviles heterogé-
neas. Estas plataformas incluyen diferentes tipos de procesadores, como CPUs y GPUs,
que son adecuados para manejar diferentes cargas de trabajo, lo que plantea un desafio en
la gestion eficiente de los recursos y el consumo energético. El enfoque del articulo esta en
maximizar la eficiencia energética sin comprometer el rendimiento de las aplicaciones. Para

CAPITULO 1. INTRODUCCION 15

lograr esto, los autores proponen un marco que evalta las caracteristicas de las aplicacio-
nes y selecciona dinamicamente el procesador mas adecuado (CPU o GPU) para ejecutar
ciertas tareas, teniendo en cuenta factores como el tipo de aplicacion y el estado actual
del sistema. Uno de los principales puntos es que, al distribuir inteligentemente las tareas
entre los distintos procesadores y ajustar el nivel de paralelismo, se puede reducir significa-
tivamente el consumo de energia en dispositivos moviles. Este enfoque permite aprovechar
al méximo las ventajas de los procesadores heterogéneos al mismo tiempo que se prolonga
la vida util de la bateria, un factor clave para los dispositivos moviles. Demostrando a
través de experimentos que este método optimiza tanto el rendimiento como el consumo
de energia en comparaciéon con las estrategias tradicionales de ejecuciéon de aplicaciones
paralelas. El articulo [48] aborda la necesidad de optimizar la transmision de datos GPS
en dispositivos moviles y del Internet de las Cosas (IoT). Dado que estos dispositivos sue-
len tener limitaciones de ancho de banda y energia, el procesamiento de datos en el borde
(edge computing) se vuelve crucial para reducir la cantidad de datos que se envian a través
de la red. Los autores proponen un método de compresion de datos GPS directamente en
el dispositivo (en el borde) antes de transmitirlos, lo que reduce significativamente la can-
tidad de datos sin perder precision relevante para aplicaciones IoT. El enfoque se basa en
algoritmos de compresion que detectan patrones y redundancias en las coordenadas GPS,
permitiendo comprimir la informacién de manera eficiente y, al mismo tiempo, conservando
los aspectos criticos de los datos necesarios para la toma de decisiones. Ademés, el articulo
analiza como esta compresién mejora la eficiencia energética de los dispositivos moviles,
ya que se requiere menos procesamiento en la nube y se minimizan las transmisiones de
datos. Este método de compresion es especialmente 1til para aplicaciones que implican un
gran niamero de dispositivos IoT, como el seguimiento de vehiculos o la gestion de flotas,
donde los voliimenes de datos pueden ser enormes. Los autores destacan que su propuesta
de compresion de datos GPS para [oT en el borde tiene un impacto positivo tanto en el
rendimiento del sistema como en la sostenibilidad de las soluciones IoT, al disminuir el uso
de energia y ancho de banda en redes moviles.

Capitulo 2

Marco teoérico

La compresion de los datos es un componente importante de la vida moderna; permite
representar la informaciéon con una menor cantidad de recursos empleados, ya que optimiza
el uso del almacenamiento y de transmision. Esta técnica es muy importante para dismi-
nuir el trafico de datos. Ejemplos de ello pueden ser las plataformas de streaming como
Netflix o Spotify, que utilizan algoritmos de compresién con pérdida para que el conteni-
do multimedia, si se transmitiera en la calidad original en que se generaron, consumiria
aun méas ancho de banda; el contenido comprimido puede reproducirse a diferentes velo-
cidades que se encuentran disponibles en la transmision. En la aplicacion de mensajeria
WhatsApp, se utiliza una compresion sin pérdida para enviar imagenes que no pierden su
calidad con la compresion. En el aspecto técnico, la compresion de datos puede dividirse
en dos categorias grandes: con pérdida y sin pérdida. La primera es utilizada en contenido
multimedia, ya que elimina detalles menos perceptibles para los usuarios; como se observa
en el formato MP3 o en los videos comprimidos con H.264. Por otro lado, la compresion
sin pérdida, como la implementada en archivos ZIP, logra que sea recuperada la informa-
cion original, siendo esencial en aplicaciones que manejan documentos importantes como
reportes médicos o archivos legales. En la tabla 2.1 se presentan las caracteristicas de los
dos tipos de compresion.

Tabla 2.1: Comparacion entre compresion sin pérdida y con pérdida, elaboracién propia.

Aspecto Compresion sin pérdida Compresion con pérdida

Propésito Preservar los datos origina- | Reducir significativamente
les sin alteraciones [49] el tamano a costa de perder
informacion [50]
Aplicaciones Textos, datos cientificos, ba- | Imagenes, audio, video [52]
ses de datos [51]
Eficiencia de Compre- | Baja a moderada [53] Alta [52]
sion
Calidad de los Datos | Exactamente igual a los ori- | Puede diferir significativa-
Recuperados ginales [49] mente de los originales de-
pendiendo del nivel de com-
presion [50]
Complejidad de los | Moderada [51] Alta [52]
Algoritmos

16

CAPITULO 2. MARCO TEORICO 17

En la actualidad se siguen desarrollando nuevas propuestas, un ejemplo de ello es
utilizar las redes neuronales para compresion con pérdida, en [54] usan modelos de auto-
codificadores variacionales, donde muestran su efectividad optimizando el tamano de los
datos resultantes. Sin embargo, los métodos clésicos como la codificacion Huffman o la
codificacion aritmética atn son utilizados debido a su simplicidad y eficiencia en casos de
recursos computacionales limitados. Asi, la compresion de datos es utilizada en una varie-
dad de aplicaciones de la vida cotidiana, desde el entretenimiento y comunicacion hasta la
infraestructura que soporta las aplicaciones y servicios. La constante evolucién de métodos
de compresion, impulsada por las necesidades del usuario junto a los avances en el diseno
de algoritmos y hardware, dan evidencia que seguira siendo relevante el trabajo propuesto.
A continuacion, se dara una breve descripcion de los principales fundamentos matematicos,
teorias y técnicas que se consideraron para comprender y desarrollar el trabajo actual.

2.1. Fundamentos matematicos

La compresion de datos sin pérdida es una técnica utilizada para reducir el tamano
de los datos sin danar la informacién. Para comprender como se implementa, asi como
entender las razones por las cuales funciona, es importante comprender los conceptos en
los que se basa. Se presentan los fundamentos clave involucrados en la compresion.

2.1.1. Teoria de la informacién

[55] La informacion es un concepto que se experimenta de manera intuitiva todo el
tiempo al recibir y enviar mensajes, ya sea al leer, ver o escuchar. A pesar de que definir
y medir matematicamente suena muy abstracto, una de las teorias de la informacion,
desarrollada por Claude Shannon en la década de 1940, proporciona una base matematica
sOlida para cuantificar la informacion.

Cuantificar la informaciéon implica medir el grado de incertidumbre que contiene un
mensaje. Esto se puede ilustrar con el lanzamiento de un dado de seis caras. Antes del
lanzamiento, hay seis posibles resultados y una incertidumbre sobre cual seré el resultado
final. Al realizar el lanzamiento, se elimina esta incertidumbre al observar un ntmero
especifico entre 1 y 6. La cantidad de informacion necesaria para identificar el resultado
puede medirse en bits, que representan preguntas binarias (de si o no) necesarias para
distinguir entre todas las opciones posibles.

Por ejemplo, para identificar el resultado de un dado, se necesitan al menos tres bits,
ya que 23 = 8 cubre las seis posibles opciones. En términos generales, cuantificar la in-
formaciéon de este modo implica determinar la cantidad minima de bits requerida para
representar los resultados de un experimento, como un lanzamiento de dado, o cualquier
situacion que pueda resolverse mediante respuestas binarias.

El uso del logaritmo es de suma importancia para medir la informaciéon. Calcula el
exponente necesario para alcanzar un ntumero dado en una base especifica. Por ejemplo,
para datos en formato decimal, se usa la base 10, mientras que, para datos binarios, se
utiliza la base 2. Asi, la cantidad de simbolos necesarios para representar un nimero N
esta relacionada con log, N, donde b es la base.

CAPITULO 2. MARCO TEORICO 18

Para determinar cuantos bits se necesitan para expresar un nimero dado, se puede
utilizar la siguiente relacion, usando X como la cantidad de bits requeridos:

10F—1=2% -1 (2.1)

Aqui, 10 — 1 representa el mayor nimero decimal de %k digitos, mientras que 2% — 1
corresponde al mayor niimero binario con X bits. Usando logaritmos, se puede resolver
para X:

10gyg

X=k 2.2
g, (2.2)

Al elegir la base 2, el célculo se simplifica:
X = klog, 10 = 3.32k (2.3)

Esto muestra que un digito decimal contiene aproximadamente 3.32 bits de informacion.
De manera general, para un sistema con base n, la relacion es:

X =klogyn (2.4)

Esto indica que la informacion contenida en un digito de base n es equivalente a log, n
bits.

En escenarios practicos, como transmisores que envian datos, el niimero de simbolos
por unidad de tiempo, denotado por s, y la base de los simbolos, n, determinan la cantidad
de informaciéon transmitida, H:

H = slog,n (2.5)

Si los simbolos tienen diferentes probabilidades de ocurrencia, la cantidad promedio de
informacion, o entropia, se calcula considerando estas probabilidades. Para n simbolos con
probabilidades P;, donde la suma de todas las probabilidades es igual a 1:

> Pi=nP (2.6)

Esto lleva a expresar H como:
H=-s» PlogP, (2.7)
1

Aqui, H mide la informacién promedio transmitida por unidad de tiempo. La entropia por
simbolo, F, se define como:

E=—) PilogPF, (2.8)
1

Esto indica que E representa la cantidad minima promedio de bits necesarios para codificar
un simbolo.

Cuando todas las probabilidades son iguales, la entropia es maxima. Esto introduce el
concepto de redundancia R, que mide la diferencia entre la entropia maxima tedrica y la
entropia observada:

R =1logy,n+ Z P;log, P; (2.9)
1

CAPITULO 2. MARCO TEORICO 19

En datos completamente comprimidos, donde no hay redundancia:
log, n + Z Pilog1 P, =0 (2.10)
1

Estos principios demuestran como la teoria de la informacion establece la base matemaética
para cuantificar, medir y optimizar la transmision eficiente de datos en una amplia variedad
de aplicaciones cotidianas y tecnologicas.

2.1.2. Cobdigos prefijos

Existen diversas técnicas que se basan en la codificacién de entropia, una de las mas
conocidas son los codigos Huffman, ya que son competitivamente 6ptimos y requieren apro-
ximadamente H lanzamientos de dado justos para generar una muestra de una variable
aleatoria que tenga entropia H. Ya que, la entropia es el limite de compresion de datos,
asi como el nimero de bits necesarios en la generacion de nimeros aleatorios. Los codi-
gos Huffman resultan éptimos desde muchos puntos de vista, ya que las secuencias cortas
representan letras frecuentes y las secuencias largas representan letras poco frecuentes. Ba-
sicamente, intenta reducir la redundancia presente en los datos de entrada y representarlos
con menos bits. El algoritmo de codificacion Huffman forma parte de los codigos prefijos
o codigos Huffman. Para sustentar que los codigos prefijos funcionan en compresion y son
6ptimos, se deben definir condiciones estrictas en los codigos. Si X™ denota (x1, s, .. ., z,).
Considerando la definiciéon: Un c6digo es no singular si cada elemento del rango de X se
asigna a una cadena diferente en D*; es decir:

r# 1 — C(x)#C(2) (2.11)

La no singularidad es suficiente para una descripcion sin ambigiiedad de un tnico valor de
X, aunque normalmente se desea enviar una secuencia de valores de X. Por ello se requiere
tener una extension de la definiciéon anterior. Definicion: La extension C* de un cédigo C
es el mapeo de cadenas de longitud finita de X a cadenas de longitud finita de D, definidas
por:

donde C'(x1) C (23)...C (z,) indica la concatenacion de las palabras de los codigos co-
rrespondientes. Con base en ello, la tercera definicion es: Un codigo es llamado tnicamente
decodificable si su extension es no singular. Lo cual significa que cualquier cadena codi-
ficada en un coédigo unicamente decodificable tiene solo una posible cadena fuente que
la produce. Sin embargo, es posible que sea necesario observar la cadena completa para
determinar incluso el primer simbolo en la cadena fuente correspondiente. Definiendo final-
mente que un codigo es llamado codigo prefijo o codigo instantéaneo si ninguna palabra de
cddigo es un prefijo de ninguna otra palabra de codigo. Siendo que un cédigo instantaneo
se puede decodificar sin referencia a palabras clave futuras, ya que el final de una palabra
clave es inmediatamente reconocible. Por tanto, para un coédigo instanténeo, el simbolo X
se puede decodificar tan pronto como se llega al final de la palabra clave correspondiente.
En otras palabras, un cédigo instantaneo es un cédigo que se puntia a si mismo.

CAPITULO 2. MARCO TEORICO 20

2.1.3. Meétodos estadisticos

La realizacion de métodos estadisticos o de codificacion de la entropia tiene sus funda-
mentos en la teoria de la informacion, que fue descrita publicamente por primera vez por
Claude Shannon en 1948. Los métodos estadisticos utilizan coédigos de longitud variable,
ya que asignan codigos mas cortos a los simbolos que son més frecuentes, utilizando mé-
todos de tamano variable. La consecuencia de ello es que tanto los disenadores como los
implementadores deben tener en cuenta, que se debe asignar codigos que puedan ser facil-
mente interpretados sin ambigiiedad y se debe asignar codigos con el tamano minimo en
promedio. De acuerdo con [55] Claude Shannon proporciona la explicacion de la entropia.
Basada en un conjunto de probabilidades y una fuente de informacion. Esta entropia, en
el contexto de la teoria de la informacion, representa el promedio de la cantidad de bits
necesarios para codificar la salida de dicha fuente. En esencia, la entropia de una fuente de
informacion cuantifica la incertidumbre asociada con sus salidas posibles. Shannon demos-
tré que la cantidad minima promedio de bits requerida para codificar la salida de manera
Optima esta determinada por la entropia de la fuente. Esto significa que ningiin compresor
sin pérdidas puede superar la eficiencia de codificacion que lograria utilizando un nimero
promedio de bits equivalente a la entropia de la fuente. En resumen, la entropia no solo
proporciona una medida cuantitativa de la informacién contenida en una fuente, sino que
también establece un limite tedrico superior para la eficiencia de cualquier compresion sin
pérdidas que intente codificar la salida de dicha fuente.

Codificaciéon Shannon-Fano

Existe un trabajo similar al descrito por Shannon, que fue hecho de forma indepen-
diente por Robert Fano y publicado en [56]. El método de codificacion conocido como
Shannon-Fano aparece en los dos trabajos y es parte esencial de la mejora en los codigos
de longitud variable existentes. Este método retne técnicas para crear codigos de longitud
variable que minimizan la cantidad promedio de bits necesarios para cada simbolo. Al
analizar las probabilidades de cada simbolo, el algoritmo asigna cédigos de manera que
los simbolos més comunes tengan codigos méas cortos, mientras que los menos comunes
tienen codigos mas largos. Estos codigos son tnicos y forman un cédigo de prefijo, lo que
significa que ningin cédigo es prefijo de otro, garantizando asi su decodificacién correc-
ta. La validacion suficiente de esta afirmacion se aborda en el anexo del documento. El
algoritmo funciona ordenando los simbolos segiin su probabilidad y dividiéndolos en dos
grupos con probabilidades totales casi iguales. A los simbolos de un grupo se les asigna
un cédigo que comienza con 0 y a los del otro grupo un cédigo que empieza con 1. Luego,
cada grupo se subdivide repetidamente de la misma manera, asignando bits adicionales
segun la probabilidad, hasta que no queden més subdivisiones. Sin embargo, aunque este
método permite interpretar los mensajes claramente, no siempre garantiza la codificacion
més eficiente, lo que limita su efectividad.

CAPITULO 2. MARCO TEORICO 21

Ejemplo: Codificacién Shannon-Fano

Se tienen los simbolos A, B, C'y D con las siguientes probabilidades asociadas:

Simbolo Probabilidad\

El algoritmo Shannon-Fano funciona de la siguiente manera:
1. Ordena los simbolos segtn su probabilidad en orden descendente: A, B, C, D.
2. Divide los simbolos en dos grupos de probabilidades lo mas equilibradas posible:

Grupo Pl‘Ob&]’)ﬂid&d‘

3. Se asigna el bit 0 al primer grupo y el bit 1 al segundo grupo.

4. Subdivide cada grupo de manera recursiva:
En el grupo 1 (A, B), se asigna0a Ay 1a B.
En el grupo 2 (C, D), se asigna0 a C'y 1 a D.

5. Esto produce las siguientes codificaciones:

Simbolo Cédigo Shannon-Fano Probabilidad‘

Como resultado, los simbolos con mayor probabilidad tienen cédigos méas cortos, lo que
disminuye la cantidad de bits necesarios para la codificacién. Dibujando el arbol de la
manera habitual en teoria de grafos, con la raiz arriba y las hojas abajo, es més facil de
observar el resultado, en la figura siguiente se ilustra el drbol de codificaciéon para este
ejemplo:

Meétodo Huffman

La codificaciéon Huffman utiliza drboles binarios para asignar cédigos més cortos a los
simbolos con mayor frecuencia de aparicion. Es particularmente eficaz cuando las distri-
buciones de probabilidad son desiguales, como en archivos de texto con caracteres de uso
comun. Aunque garantiza una compresion 6ptima para un solo simbolo, no aprovecha pa-
trones repetidos entre ellos, limitando su eficacia en algunos casos. Un ejemplo préctico es

CAPITULO 2. MARCO TEORICO 22

A(0.4) B(0.3) (C(0.2) D(0.1)

Figura 2.1: Arbol de codificacién Shannon-Fano, elaboraciéon propia.

su integracion en la compresion de texto en archivos ZIP [57|. Esta codificacion es similar
a la codificacion Shannon-Fano, la principal diferencia recae en que se ha demostrado que
Huffman siempre produce la codificacion de prefijo 6ptima, mientras que Shannon-Fano en
algunas situaciones puede ser ligeramente menos eficiente. Este método se consideré ini-
cialmente para formar parte del disenio, pero se opt6 por crear una arquitectura basada en
teorias de los algoritmos y no limitar el trabajo a solo copiar e implementar un algoritmo.

2.2. Métodos de diccionario

En la compresion basada en diccionarios, se seleccionan secuencias de simbolos que
luego se codifican como tokens utilizando un diccionario predefinido. La eficacia de la
compresion depende de la calidad de este modelo. Este diccionario puede ser estatico o
dindmico: el primero es inmutable y ocasionalmente permite la adicién, pero no la elimina-
cion de secuencias, mientras que el segundo se ajusta continuamente segin las secuencias
encontradas en la corriente de datos, facilitando tanto la adiciéon como la eliminacién de
entradas a medida que se procesan nuevos datos. En términos simples, un compresor ba-
sado en diccionario busca patrones repetitivos en la cadena de texto. Cuando encuentra
estos patrones, los sustituye por cdédigos més cortos, lo que reduce el tamano del archivo
original. Idealmente, puede comprimir una cadena de n simbolos hasta aproximadamente
nH bits. La letra H representa la entropia, en este caso del conjunto n de simbolos. La
entropia, en este contexto, es una medida de la incertidumbre o la informaciéon promedio
por simbolo en la cadena. Es importante mencionar que los compresores basados en diccio-
nario se comportan como codificadores de entropia, son mas eficientes cuando comprimen
archivos grandes. Para aplicaciones précticas, como la compresion de archivos comunes
como texto, imégenes o datos de audio, estos compresores en general ofrecen resultados
dentro de los pardmetros adecuados, por lo tanto, gracias a su sencillez de funcionamiento
y resultados son muy utilizados. Algunos de los algoritmos més conocidos de este tipo, son
los basados en LZ, los cuales se revisaron para el presente trabajo; teniendo en cuenta su
objetivo, ventajas y desventajas, se presentan brevemente los mas relevantes.

CAPITULO 2. MARCO TEORICO 23

2.2.1. Algoritmos de codificaciéon LZ

Existen diversos algoritmos de compresién basados en diccionarios, entre ellos, los de-
rivados del trabajo propuesto en 1977 por Jacob Ziv y Abraham Lempel, con los que se
inici6 una nueva rama en compresion [11]. El fundamento de estos métodos consiste en
utilizar una porciéon del texto procesado y crear un diccionario dindmico con esos datos.
El compresor utiliza una memoria intermedia, o "buffer", denominada "ventana deslizan-
te""para la cadena de entrada. Esta ventana, por lo general, desplaza los datos de derecha a
izquierda conforme se codifican los simbolos, permitiendo asi la identificaciéon de patrones
recurrentes en la entrada.

Método LZ77

El método LZ77 se basa en la utilizacion de una ventana deslizante para identificar pa-
trones repetidos dentro de los datos. Este enfoque permite reemplazar secuencias repetidas
con referencias a su posicion y longitud dentro de un buffer. Es ampliamente utilizado en
formatos como ZIP y GZIP debido a su capacidad para manejar datos con redundancia
local significativa. Sin embargo, requiere un buffer de busqueda y puede volverse ineficiente
cuando los patrones repetidos estdn muy espaciados. Por ejemplo, en el caso de archivos
de texto con frases recurrentes, LZ77 logra una compresion eficiente [58|, mas adelante se
aborda a detalle este método, ya que se eligié para ser la base de la arquitectura disenada.

Meétodo LZ78

El método LZ78, una extension del LZ77, construye un diccionario dinamico de patro-
nes observados, asignando un indice tinico a cada nueva secuencia detectada. Esta técnica
es ttil para datos con redundancia global, como documentos extensos con miiltiples ocu-
rrencias de términos especificos. Una de sus principales ventajas es la eliminacion de la
necesidad de un buffer de bisqueda continuo, pero introduce la sobrecarga de administrar
el diccionario. Un caso practico es su uso en el algoritmo GIF para comprimir imagenes
de baja complejidad [59], cabe resaltar que LZ78 no se consider6 adecuado, debido a su
patente que data de 1984 y permanece activa hasta el 2028 [60].

Meétodo Deflate

Deflate combina LZ77 y codificacion Huffman para lograr una alta eficiencia en la com-
presion. Este método primero identifica patrones repetidos con LZ77 y luego codifica las
secuencias resultantes utilizando un esquema Huffman, que asigna c6digos més cortos a los
patrones frecuentes. Es empleado en formatos como PNG, donde la pérdida de informa-
cion es inaceptable. Aunque ofrece una alta tasa de compresion, su implementacion es mas
compleja y requiere un mayor poder computacional [61]. Al igual que el método anterior,
se tuvo la oportunidad de revisar a detalle el funcionamiento y se observé que se perdia el
objetivo de estudio al remitir el trabajo solo a replicar un algoritmo.

CAPITULO 2. MARCO TEORICO 24

Meétodo Codificacidén Aritmética

El altimo método presentado es la codificacion aritmética, la cual asigna rangos de
probabilidad a secuencias de simbolos, representando todo un mensaje con un tnico ni-
mero dentro del rango acumulativo. Este método ofrece una compresion mas cercana al
limite teérico de Shannon que Huffman, especialmente para datos con simbolos altamente
correlacionados. Sin embargo, su implementacion es mas compleja y puede ser mas lenta.
Es utilizada en estandares como H.264 para la compresion de video [62].

2.2.2. Un ejemplo de compresiéon

Teniendo en cuenta diversos formatos digitales del dia a dia, es evidente que en la
mayoria de ellos se realiza de una u otra forma algin tipo de compresiéon para almacenar
de forma eficiente la informacion, tomando de ejemplo el formato PDF (Portable Document
Format en inglés, formato de documento portatil’). La compresion de archivos PDF es
un proceso que combina diversos algoritmos de compresion para minimizar el tamano del
archivo, manteniendo su contenido legible y funcional. Los métodos principales utilizados
en este formato son:

» Compresion de imagenes: El formato PDF utiliza métodos de compresion tanto
con pérdida como sin pérdida, dependiendo de las configuraciones y el proposito del
archivo.

1. Compresion con pérdida (JPEG): Se utiliza para imagenes con escala de grises
o color, internamente en general se utilizan matrices para reducir el tamano
eliminando detalles que se pueden considerar redundantes, depende de la con-
figuracion se reduce en mayor o menor cantidad la calidad del resultado.

2. Compresion sin pérdida (Flate/PNG): Se basa en el algoritmo DEFLATE, pero
a diferencia de GIF, se elimina todo algoritmo que esta protegido por una paten-
te, se comprime la imagen en formato monocromatico o de gréaficos vectoriales,
sin perder calidad en los datos [63, 64].

» Codificaciéon de texto: El texto en un PDF es generalmente codificado usando
Flate, mientras que el texto en general puede ser comprimido utilizando algoritmos
como JBIG2. Ya que permite el agrupamiento de caracteres similares para reducir
el almacenamiento sin comprometer significativamente la legibilidad |65, 66].

= Estructura del documento: Los archivos PDF emplean un almacenamiento seg-
mentado para contenido estructurado. Esto incluye la compresion de los datos in-
dividuales, como objetos y referencias cruzadas. Ademés, de otras medidas para
disminuir las redundancias [67].

= Compresion de metadatos y fuentes: Los metadatos y las fuentes utilizadas
en los archivos son comprimidas con Flate o eliminados parcialmente en algunas
configuraciones de compresion. Los subconjuntos de fuentes (subsetting) también
ayudan a reducir el tamano, almacenando tinicamente los caracteres utilizados en el
documento |68, 69].

CAPITULO 2. MARCO TEORICO 25

2.3. Computacién en paralelo

En el disenio de arquitecturas de hardware se requiere un enfoque que tenga principal-
mente en cuenta los fundamentos matematicos, teorias de compresion de datos y técnicas
especializadas de procesamiento en paralelo. Este tltimo elemento, el paralelismo, se uti-
liza en este trabajo para buscar aprovechar los recursos disponibles para alcanzar un alto
rendimiento en la arquitectura. Se aborda brevemente el tema, considerando [70]. El pa-
ralelismo consiste en dividir una tarea en subtareas independientes que pueden ejecutarse
en simultaneo por diferentes elementos de procesamiento. Esta técnica disminuye el tiem-
po de ejecucion, mejorando la escalabilidad y eficiencia energética de la arquitectura. Ya
que permitird comparar miltiples cadenas al mismo tiempo, lo que acelera el proceso de
busqueda y codificacion.

2.3.1. Importancia del paralelismo

El paralelismo en la actualidad es un componente fundamental en la computacion,
debido al estancamiento en el crecimiento de la frecuencia de reloj de los procesadores
tradicionales. En lugar de depender exclusivamente de procesadores més rapidos, las ar-
quitecturas actuales se apoyan en niuicleos miltiples y aceleradores como las GPUs para
realizar tareas en paralelo. Por ejemplo, al realizar la ediciéon de una imagen, el ajuste del
brillo en cada pixel puede llevarse a cabo en paralelo, procesando multiples pixeles simulta-
neamente en lugar de uno por uno. Este enfoque ha demostrado ser crucial en aplicaciones
como compresion de datos en tiempo real, simulaciones fisicas y procesamiento masivo de
informacion.

2.3.2. Tipos de paralelismo

Existen diferentes niveles de paralelismo que se pueden aprovechar en el diseno de
sistemas:

» Paralelismo a nivel de datos (DLP): Procesa miltiples datos aplicando la misma
operacion de manera simultdnea. Esto es comiin en aplicaciones graficas y algoritmos
de compresion, como la busqueda de coincidencias en algoritmos LZ77.

» Paralelismo a nivel de instrucciones (ILP): Permite reordenar y ejecutar varias
instrucciones de manera paralela dentro de un solo nucleo del procesador.

» El paralelismo a nivel de solicitudes (RLP) se aplica en sistemas como servi-
dores web, donde miiltiples peticiones de usuarios se procesan simultdneamente para
mejorar la respuesta y escalabilidad del sistema.

» Paralelismo a nivel de tareas (TLP): Distribuye tareas independientes entre
diferentes nucleos de procesamiento, lo que resulta esencial en sistemas multiproce-
sador.

CAPITULO 2. MARCO TEORICO 26

2.3.3. Ventajas y retos

Uno de los beneficios mas evidentes de la computacion en paralelo es la reduccion de
tiempo de ejecucion, esto es beneficioso en aplicaciones que pueden dividirse facilmente
en subtareas independientes. Ademas, esta técnica permite manejar una mayor carga de
trabajo si se agregan recursos de hardware, lo que mejora la escalabilidad del sistema. Sin
embargo, al momento de disenar arquitecturas en paralelo se deben tener en cuenta los
problemas que surgen con ello. Se deben sincronizar las subtareas para evitar inconsis-
tencias, en especial cuando comparten datos. También se debe considerar el balance de
la carga de trabajo entre las unidades de procesamiento, ya que una distribucién dispar
puede limitar el rendimiento global del sistema. Adicionalmente, el diseno y desarrollo de
algoritmos paralelos suelen ser mas complejos que sus contrapartes secuenciales.

2.3.4. Paralelismo y la taxonomia de Flynn

El paralelismo en computacion se clasifica ampliamente segiin los modelos de ejecucion
y las estructuras de procesamiento que utiliza. Una de las herramientas més reconocidas
para esta clasificacion es la Taxonomia de Flynn, propuesta por Michael J. Flynn en
1966 [71]. Este modelo organiza las arquitecturas en cuatro categorias basadas en el nimero
de instrucciones y de datos que pueden procesar simultaneamente.

Categorias de la taxonomia de Flynn

1. SISD (Single Instruction, Single Data, en inglés): Representa la arquitectura
secuencial clasica, donde una tnica unidad de control ejecuta una instrucciéon sobre
un unico flujo de datos en un momento dado. Ejemplo: Procesadores tradicionales
como los primeros Intel 8086.

2. SIMD (Single Instruction, Multiple Data, en inglés): Permite ejecutar una
misma instrucciéon simultaneamente sobre multiples conjuntos de datos. Es ideal para
aplicaciones con gran paralelismo a nivel de datos, como procesamiento de iméagenes
o graficos. Fjemplo: GPUs modernas o extensiones como Intel AVX.

3. MISD (Multiple Instruction, Single Data, en inglés): Aunque rara vez imple-
mentada, esta categoria describe arquitecturas donde multiples flujos de instrucciones
operan sobre un tnico flujo de datos. Se utiliza en casos especializados como sistemas
redundantes para tolerancia a fallos. Ejemplo: Los sistemas de control de un avién.

4. MIMD (Multiple Instruction, Multiple Data, en inglés): Soporta multiples
flujos de instrucciones ejecutandose en paralelo sobre multiples flujos de datos. Es
comin en sistemas multiprocesador y clisteres. Ejemplo: Supercomputadoras y pro-
cesadores multinicleo como los modernos Intel Xeon o AMD EPYC.

2.3.5. Importancia de la taxonomia de Flynn

Es una referencia que ayuda a clasificar de forma sencilla las arquitecturas de compu-
tadoras, puede ser de ayuda al disenar arquitecturas en paralelo. Cada categoria define la

CAPITULO 2. MARCO TEORICO 27

forma en que se procesan los datos y como se hace y no es que alguna sea mejor que otra,
depende de la tarea que se pretende atacar para considerar una u otra técnica. Por ejemplo,
las arquitecturas SIMD son eficientes en problemas con gran homogeneidad en los datos,
mientras que MIMD es més flexible y capaz de manejar tareas heterogéneas en paralelo.
Considerando esta guia para el desarrollo de la arquitectura de compresion de datos, las
arquitecturas SIMD pueden ser de ayuda en operaciones repetitivas como la comparacion
de cadenas, mientras que MIMD facilita la implementacion de algoritmos complejos que
combinan miltiples etapas de procesamiento.

2.3.6. Aplicaciones relevantes

En la actualidad existen por doquier ejemplos que se pueden categorizar de acuerdo
con la taxonomia de Flynn:

= En procesamiento gréafico, las GPUs utilizan en su mayorfa un modelo SIMD para
realizar operaciones en simultaneo para el manejo de los pixeles.

» Las supercomputadoras, basadas en MIMD, son utilizadas para simulaciones que
requieren procesar muchos datos, como modelos climaticos o anélisis genémicos.

= Los sistemas embebidos pueden implementar variantes de MISD para generar redun-
dancia en entornos criticos.

2.3.7. Aplicaciéon en arquitecturas de compresion

En el contexto de las arquitecturas de compresion de datos, el paralelismo permite
optimizar operaciones criticas como la busqueda de cadenas repetidas y la codificacion
eficiente. Por ejemplo, mediante una matriz sistolica, es posible realizar comparaciones
de datos en paralelo, reduciendo significativamente la latencia del sistema. Esta técnica se
consider6 particularmente relevante para implementar algoritmos como LZ77 en hardware.
Se aborda a detalle en la siguiente seccion el entendimiento obtenido sobre el tema de
matrices sistolicas.

2.4. Matrices sistolicas en la arquitectura de hardware

Las matrices sistolicas son una de las estructuras de mayor relevancia en el diseno
de arquitecturas de hardware en paralelo, debido a su capacidad para realizar calculos
complejos de manera eficiente mediante la sincronizaciéon entre multiples elementos de
procesamiento. Este modelo, introducido por Kung y Leiserson en 1978 [1], combina la
division de los datos en pequenos segmentos y su procesamiento en paralelo, logrando
resolver problemas computacionales intensivos con la utilizacion de matrices. El término
"sistolico"proviene de la analogia con el sistema circulatorio, donde el flujo de datos a
través de los elementos de procesamiento se asemeja al flujo sanguineo a través de las
arterias y venas. En una matriz sistolica, los datos fluyen de manera sincronizada entre
celdas vecinas en ciclos de reloj predefinidos. Cada elemento de procesamiento realiza una

CAPITULO 2. MARCO TEORICO 28

operacion local sobre los datos que recibe, los actualiza y los reenvia a la siguiente celda,
siguiendo un patrén regular y predecible, en la siguiente figura se aprecia este esquema.

Almacenamiento

eP

Almacenamiento

eP|eP|eP|eP

Figura 2.2: Diagrama de matriz sistolica, basado en [1].

Estas matrices ofrecen una ventaja significativa en términos de rendimiento, ya que
aprovechan el paralelismo ofrecido por el hardware. Por ejemplo, en el caso de la multi-
plicacion de matrices, cada celda en la matriz sistélica puede calcular productos parciales
de manera simultédnea, propagando los resultados hacia las celdas cercanas. Este enfoque
reduce la complejidad de control y minimiza la latencia, ya que todas las operaciones se
realizan de forma local en cada elemento de procesamiento y sincronizadas entre ellos.

Una analogia a las matrices sistolicas es la cadena de produccion en una fabrica. En este
caso, cada estacion realiza una operacion especifica sobre el producto, como ensamblaje,
pintura o embalaje, y luego lo pasa a la siguiente estacion. Todas las estaciones trabajan
de manera simultdnea, pero cada una tiene un trabajo independiente y sincronizado. De
manera similar, en una matriz sistolica, cada celda realiza célculos especificos mientras
recibe y envia datos, maximizando la eficiencia del sistema.

Aplicadas a compresion de datos, las matrices sistolicas son utiles en la implementacion
de algoritmos LZ, ya que las operaciones de busqueda y comparacion se pueden dividir
en procesos que se ejecuten en paralelo. Por ejemplo, en la propuesta basada en LZ77, se
utilizaréd la matriz sistolica para asignar a cada elemento de procesamiento la comparacion
de una parte especifica del texto con el diccionario, reduciendo dréasticamente el tiempo
necesario para encontrar coincidencias si se realizara de forma secuencial.

Ademas, la eficiencia de las matrices sistélicas destaca por su sencillez en el disenio de
hardware. Al estar compuestas por elementos homogéneos con interconexiones regulares,
estas estructuras son féciles de seguir en su implementacion y también entendibles para su
escalamiento. Por esta razon, son ampliamente utilizadas en sistemas embebidos y disposi-
tivos de procesamiento de senales, como filtros digitales y codificadores de video, donde se
tiene limitado el espacio y energia. Las matrices sistolicas son una poderosa herramienta
para disenar arquitecturas de hardware, ya que combinan eficiencia, paralelismo y mo-
dularidad. Su capacidad para resolver problemas computacionales intensivos de manera
simultanea hace que sean una opcion ideal para aplicaciones como compresion de datos,
donde se deben realizar muchas comparaciones y busquedas. Basarse en este enfoque en el

CAPITULO 2. MARCO TEORICO 29

desarrollo de la arquitectura, busca garantizar un alto rendimiento y un uso eficiente de
los recursos disponibles.

2.4.1. Método seleccionado

Se eligi6 el método de compresion tomando en cuenta tanto las ventajas como desven-
tajas de todo lo que rodea a los algoritmos estudiados, desde el tipo de datos en los que
se desempenan mejor, la forma en que se pueden optimizar, hasta las restricciones que
se les imponen para su utilizaciéon. Considerando un modelo de acuerdo con la teoria de
ventana deslizante, ya que se puede implementar de forma eficiente en hardware y mejo-
rar su desempeno en la busqueda de coincidencias sin necesidad de agregar complejidad
computacional que no harfa una gran diferencia en los resultados obtenidos.

En especifico, se decidio realizar el diseno basado en el algoritmo LZ77, por su desem-
peno comprobado y estudiado desde su publicacion por Ziv y Lempel [72]. El uso de una
ventana deslizante en LZ77 permite encontrar coincidencias en cadenas de texto, logrando
una compresion eficiente. Sin embargo, una ventaja adicional que es clave en este trabajo
es la forma de procesar en paralelo los datos, haciendo uso de matrices sistolicas. Esta
implementacion logra adaptar partes criticas del algoritmo al hardware y aprovecharlo de
forma eficiente. Disminuyendo el tiempo de compresion, ya que se busca y compara de
forma simultanea en varias partes del texto a la vez.

El diseno seleccionado también se puede adaptar a arquitecturas para diversas tareas
especificas. En casos donde el consumo energético es un factor que se debe considerar, la
arquitectura propuesta ofrece beneficios importantes. Investigaciones recientes respaldan
esta afirmacion al demostrar que este enfoque puede disminuir el uso de memoria y tiempo
de transferencia de datos en dispositivos embebidos [73].

Al utilizar el paralelismo a nivel de datos (DLP) al ejecutar operaciones repetitivas de
manera simultanea, el método seleccionado no solo mejora el rendimiento, sino que también
permite aprovechar arquitecturas como SIMD, que son recomendadas para procesar datos
en paralelo en aplicaciones como la biisqueda de coincidencias dentro del algoritmo LZ77.
Esto confirma la viabilidad del modelo propuesto y las ventajas que presenta.

Capitulo 3
Analisis

Se consider6 la metodologia como parte de la estructura de este trabajo; se realizo
primero el desarrollo del modelo general, seguido de la construccion de la lista de funcio-
nalidades, aunque para ello se debe tener claro los aspectos que se deben analizar para la
construccion de la arquitectura. Se analiza el algoritmo en el que se basa la arquitectura,
asi como el paralelismo y el hardware de pruebas utilizado. Todo ello para poder describir
una propuesta fundamentada y que sea factible de disenar.

3.1. Algoritmo LZ77 a detalle

El algoritmo, conocido actualmente como LZ77 en honor a las iniciales de sus creadores,
emplea esta ventana deslizante como un diccionario que permite visualizar la entrada tal
como se esta codificando. La ventana deslizante almacena los tltimos n simbolos emitidos
por la fuente, facilitando la identificacion de secuencias en la entrada que coinciden con
las presentes en la ventana deslizante. La ventana se conforma por el apartado izquier-
do, llamado buffer de busqueda, que actiia como el diccionario actual, donde almacena
los tltimos simbolos codificados. Por otro lado, la parte derecha es el buffer de lectura
anticipada, que contiene el texto que ain no se ha leido. A continuacién, se muestra la
ventana deslizante sobre un texto de ejemplo. La linea vertical entre los simbolos "1" y
"o" representa la division entre los dos buffers. Los simbolos en la ventana izquierda ya
han sido comprimidos, mientras que el texto en la ventana derecha todavia necesita ser
procesado.

«lexto En_el_principio_Dios_cred_los_ciel | os_y_la_tierra. Simbolos por
comprimido procesar—

Figura 3.1: Ejemplo de ventana deslizante, elaboracién propia.

El codificador revisa el buffer de bisqueda comenzando desde el final hacia el principio
(leyendo en orden inverso a los humanos) encontrando las coincidencias con el simbolo
actual en el buffer de lectura anticipada. Encuentra una coincidencia con la letra ’o’ de la
palabra "los". Esta o’ se encuentra a 7 posiciones de la primera ’o’. El siguiente paso es

30

CAPITULO 3. ANALISIS 31

buscar concordancias con la mayor cantidad posible de simbolos adyacentes a la derecha.
Al revisar el ejemplo, se verifica que coinciden tres caracteres "os_", siendo entonces la
longitud de 3. El compresor continiia leyendo el texto en orden inverso en busqueda de
coincidencias. Utilizando la coincidencia mas larga, en caso de que todas las coincidencias
tengan la misma longitud, se opta por la tltima de ellas, y con esa informacién prepara
el token. Escogiendo la tltima coincidencia se simplifica el proceso de descompresion, ya
que solo tiene que mantener la direccién de la ultima cadena encontrada, aunque a costa
de tener desplazamientos mas largos. El token producido es en realidad una triada que se
crea al encontrar una coincidencia; los elementos de la triada son:

1. Desplazamiento en la ventana donde se encontré la coincidencia.
2. Longitud de la coincidencia.
3. El siguiente simbolo después de la frase actual.

Teniendo en cuenta los elementos que lo conforman, en el ejemplo anterior se obten-
dria el token (7,3,y). La ausencia de una coincidencia da como resultado una triada de
(0,0,C (s)), donde C (s) es la palabra clave para el simbolo S. Ya que la ventana tiene una
longitud finita, las repeticiones en la entrada con un periodo mas grande que n no pueden
ser detectadas y comprimidas por LZ77. El diccionario LZ77 incluye todas las sub-cadenas
y simbolos individuales de una cadena dentro de una ventana deslizante. Esta técnica
ha evolucionado con variaciones que han dado lugar a los algoritmos de codificacion LZ
(Lempel-Ziv). Estos algoritmos son herramientas fundamentales en la compresion de da-
tos, ya que permiten reducir el tamano de archivos sin perder informacién, aprovechando
patrones recurrentes en los datos |74]. LZ77, LZSS, LZ78 y LZW son las variaciones més
comunes de los algoritmos de codificacion LZ, Deflate por su parte, utiliza compresion
LZ77.

LZ77 procesa datos de izquierda a derecha, insertando cada cadena en el diccionario.
Por lo general, el diccionario esta limitado por la memoria disponible, por lo que se utili-
za un diccionario deslizante. Un diccionario deslizante mantiene una lista de las cadenas
utilizadas mas recientemente. Si cierta cadena no esta en el buffer de busqueda, esta se
toma como una secuencia literal de bytes. Si se encuentra una coincidencia, la cadena
se reemplaza por un puntero a la cadena coincidente en forma de par distancia-longitud.
El par distancia-longitud se compone de dos partes: la distancia desde la posicion actual
hasta el comienzo de la coincidencia y la longitud de la coincidencia. La informacion recién
comprimida también esta precedida por un bit de bandera para distinguir los literales de
los pares distancia-longitud. Los bits de bandera se pueden empaquetar juntos en un byte
para conservar memoria. El acceso eficiente al diccionario es clave, por lo que la mayoria
de los programas, incluido GZIP, implementan el diccionario mediante funciones hash.
Las implementaciones de hardware de los algoritmos de codificacion LZ77 suelen utilizar
memorias direccionables de contenido (CAM) o matrices sistolicas. aunque las CAM ge-
neran un alto rendimiento, son costosas en términos de requisitos de hardware. Por otro
lado, las matrices sistélicas requieren menos hardware y ofrecen una capacidad de prueba
mejorada. Ambas tecnologias tienden a ser complejas y dependen de las caracteristicas
proporcionadas por la arquitectura del hardware.

CAPITULO 3. ANALISIS 32

3.1.1. Complejidad computacional del algoritmo LZ77

El algoritmo LZ77, disefiado por Ziv y Lempel en 1977 |72], utiliza una ventana desli-
zante para identificar patrones repetitivos en un flujo de datos, reemplazando las cadenas
redundantes por referencias compactas a posiciones anteriores. Este enfoque permite una
compresion eficiente sin pérdida de informacion, pero su implementacioén presenta diferen-
tes complejidades computacionales dependiendo de si se ejecuta en software o hardware.

Complejidad computacional en software

En una implementacion basica de LZ77 en software, cada simbolo del texto de entrada
se compara con las cadenas almacenadas en la ventana deslizante para encontrar la coin-
cidencia mas larga. Considerando la complejidad computacional de este algoritmo, es de

O(n -m), donde:

= n: Longitud del texto de entrada.

= m: Ventana deslizante, tamano.

Por ejemplo, con n = 1,000,000 caracteres y m = 32,768 caracteres (tamafio tipico
de ventana en compresores como gzip), el nimero maximo de operaciones podria alcanzar
aproximadamente 3.28 x 10'°. Se puede optimizar el calculo en parte, utilizando estructuras
de datos como lo son, tablas hash o arboles de subfijos, estos pueden reducir la complejidad
de busqueda promedio a solo O(n). aunque se debe tener en cuenta que estas optimizaciones
hacen que se consuma més memoria y puede ser fuente de cuellos de botella al procesar
grandes volimenes de datos.

En sistemas que tienen que ejecutarse con recursos limitados, el caso de los dispositivos
moviles, estas optimizaciones por lo general son inviables, ya que se tiene memoria y energia
restringida. También se debe considerar la latencia que agrega el acceso a memoria y que
se debe procesar de forma secuencial, resultando en una afectaciéon en el tiempo total de
ejecucion, limitando la optimizacion y escalabilidad del algoritmo solo con soluciones via
software.

Implementaciéon en hardware y su complejidad

En hardware, el algoritmo LZ77 puede beneficiarse enormemente de la paralelizacion.
Usando una arquitectura basada en matrices sistolicas, cada celda de la matriz puede
asignarse a la comparacion de sub-cadenas especificas dentro de la ventana deslizante.
Esto permite realizar multiples operaciones de biisqueda y comparacion simultdneamente.
La complejidad practica de esta implementacion se reduce a O(n), ya que cada simbolo
del texto de entrada se procesa en un ciclo de reloj.

Por ejemplo, un FPGA como el Artix-7 XC7A200T puede integrar hasta 740 bloques
DSP y 215,360 celdas logicas. En una configuracion tipica, un disenio de matriz sistolica
para LZ77 podria dividir la ventana deslizante en 256 bloques, con cada bloque maneja-
do por un conjunto de celdas. Si el FPGA opera a una frecuencia interna de 200 MHz,
cada simbolo puede procesarse en aproximadamente 5ns, permitiendo una tasa de proce-
samiento cercana a 200 MBs™!. Esto sigue representando una mejora significativa respecto
a implementaciones en software, que suelen alcanzar tasas promedio cercanas a 50 MBs™!.

CAPITULO 3. ANALISIS 33

Comparacion y cambios en la complejidad

El cambio en la complejidad computacional entre software y hardware es notable. En
software, el procesamiento secuencial y las dependencias en estructuras auxiliares incre-
mentan tanto el tiempo de ejecucion como la utilizacion de recursos. En hardware, la
paralelizacion reduce la complejidad efectiva, ya que las operaciones mas intensivas, como
la comparaciéon y la bisqueda, se distribuyen en multiples celdas que operan de manera
concurrente.

Adicionalmente, el uso de memoria en hardware esté optimizado para minimizar accesos
redundantes. ya que se tienen bloques de RAM distribuidos localmente para ayudar a tener
un acceso rapido y eficiente, mientras que en software la memoria puede convertirse en un
cuello de botella.

Ejemplo de complejidad entre software y hardware

Un ejemplo préactico de complejidad alta puede observarse al procesar un archivo de 1
GB utilizando LZ77 con una ventana de 64 kB. En software, se necesitarian aproximada-
mente 6.4 x 10'° comparaciones, lo que llevaria varios minutos en un procesador tipico de
3 GHz. Sin embargo, en hardware, el mismo archivo podria llegar a procesarse en menor
tiempo, gracias a la paralelizacion y a la eliminacion de cuellos de botella en memoria.

3.1.2. Impacto en el diseno de hardware

Disenar hardware para implementar LZ77 implica equilibrar el uso de recursos con el
rendimiento deseado. Por ejemplo, el Artix-7 XC7A200T puede proporcionar suficiente
capacidad logica y bloques DSP para manejar ventanas deslizantes de hasta 128 kB con
baja latencia: més adelante se detallan las caracteristicas de la tarjeta de pruebas utilizada.
La escalabilidad del disefio también es un factor critico, ya que arquitecturas més grandes
pueden integrarse facilmente en hardware reconfigurable para manejar mayores volimenes
de datos sin comprometer la velocidad de procesamiento. Mientras que el algoritmo LZ77
mantiene su logica fundamental independientemente del entorno, la implementacion en
hardware transforma su complejidad computacional. Esto permite alcanzar un rendimiento
significativamente superior, lo que lo hace adecuado para aplicaciones de alta demanda
como la compresion en tiempo real y el procesamiento masivo de datos. Se realiza la
siguiente propuesta de entradas y resultados que debe tener la arquitectura de compresion.

3.2. Descripcion del hardware empleado

La tarjeta de desarrollo AX7A200, basada en el FPGA AMD Artix-7 XC7A200T, fue
seleccionada para este proyecto por su combinaciéon de soporte a largo plazo, flexibilidad
modular y capacidades técnicas avanzadas, se muestra en la figura 3.2 . AMD garantiza
soporte oficial para la familia Artix-7 hasta el ano 2035, lo que la convierte en una solucién
ideal por la cantidad de personas utilizandola actualmente y el soporte oficial que tiene
en el presente tanto en la herramienta de desarrollo, como en foros de ayuda en caso de
requerirse, a diferencia de otras tarjetas de desarrollo que se consideraron [75].

CAPITULO 3. ANALISIS 34

Figura 3.2: FPGA utilizada, tomado de [2]

3.2.1. Caracteristicas de la tarjeta AX7A200

La tarjeta AX7A200 integra el modulo SoM AC7A200. La placa incluye una amplia
gama de conectores y componentes, como PCle 2.0, dos ranuras SFP, puertos HDMI de
entrada y salida, un conector JTAG para programacion, una ranura para tarjetas SD, y
dos conectores de expansion de 40 pines. Estas caracteristicas hacen que sea apta para una
variedad de aplicaciones, incluyendo:

1. Procesamiento de datos intensivo, gracias a su soporte para comunicaciones de alta
velocidad a través de PCle.

2. Procesamiento y transmision de video e imagenes con entradas y salidas HDMI.
3. Transmision de datos Ethernet mediante fibra ¢ptica utilizando las ranuras SFP.

La capacidad de expansion de la tarjeta permite integrar moédulos adicionales, como
sistemas de adquisicion de datos AD /DA, camaras para vision artificial y pantallas LCD, lo
que incrementa su versatilidad. Esta flexibilidad asegura que el hardware pueda adaptarse
facilmente a nuevas necesidades y escalar en complejidad sin reemplazar el sistema base
[76].

3.2.2. Especificaciones técnicas del FPGA Artix-7 XC7A200T

El FPGA Artix-7 XC7A200T, nucleo de la tarjeta, ofrece especificaciones destacables
en su categoria, manteniendo un precio coherente:

1. Capacidad logica: 215,360 celdas logicas, suficientes para implementar algoritmos
complejos, desde compresion de datos hasta procesamiento de senales.

2. Frecuencia interna: Hasta 200 MHz, lo que proporciona una alta capacidad de pro-
cesamiento para aplicaciones intensivas en célculo.

CAPITULO 3. ANALISIS 35

3. Memoria integrada: 13.14 Mb de memoria de bloque, ideal para almacenar datos
temporales durante el procesamiento.

4. Capacidad de DSP: 740 bloques DSP dedicados, optimizados para calculos matema-
ticos intensivos como multiplicaciones matriciales y filtros digitales.

5. Interfaz transceptora: Compatible con transceptores de alta velocidad, alcanzando
tasas de datos de hasta 6.6 Gbps, crucial para aplicaciones de comunicacion.

3.2.3. Consumo energético y rendimiento térmico

Una de las caracteristicas a destacar de la tarjeta de desarrollo Artix 7, es su eficiencia
energética, alcanzando un equilibrio entre alto rendimiento y bajo consumo de potencia.
De acuerdo con sus especificaciones, el consumo promedio es entre 5 y 20 W, dependiendo
de la complejidad de la aplicacion y los recursos utilizados del FPGA. Este bajo consumo
lo hace ideal para aplicaciones en sistemés embebidas o moviles, donde se debe considerar
la eficiencia energética. La tarjeta esta disenada para operar en un rango de temperaturas
industriales, soportando entre -40 °C y 85 °C, lo que la hace apta para entornos cambiantes
y hasta aplicaciones al aire libre.

3.2.4. Velocidad de operacion y latencia

La velocidad a la cual opera la tarjeta de desarrollo permite realizar calculos en paralelo
con baja latencia. Esto es 1til en tareas especificas como la compresion de datos, donde las
operaciones de biisqueda y comparacion pueden realizarse de forma paralela eficientemente.
Al implementar algoritmos en hardware, como el caso de matrices sistdlicas, la latencia
puede reducirse ain mas, ya que se busca mejorar el rendimiento de la arquitectura al
tener el flujo de datos sincronizado entre los elementos de procesamiento.

3.2.5. Escalabilidad y aplicaciones

La tarjeta de desarrollo elegida facilita la escalabilidad, ya que permite agregar dife-
rentes modulos de forma sencilla. Esto la convierte en una solucion flexible para proyectos
que requieren cambios constantes o mejoras a largo plazo. Entre sus aplicaciones destacan:

1. Procesamiento de senales digitales (DSP) en tiempo real.
2. Compresion y transmision de datos en redes de alta velocidad.
3. Sistemaés de vision artificial y procesamiento de imagenes en entornos industriales.

La tarjeta de desarrollo AX7A200, con el FPGA Artix-7 XC7A200T, ofrece una com-
binacién equilibrada de rendimiento, eficiencia energética y flexibilidad. Su soporte a largo
plazo y su diseno modular sirven para mantener relevancia para proyectos industriales y
cientificos en los proximos anos.

CAPITULO 3. ANALISIS 36

3.3. Desarrollo de modelo general

En esta etapa se planed a grandes rasgos el alcance que debe tener la arquitectura
como un todo, asi como su posible composicién y formas viables de dividirlo en pequenas
funcionalidades que se pueden desarrollar.

Aunque en la actualidad se siguen desarrollando teorias y métodos de compresion, de-
pendiendo del tipo de compresion que se utilice, es diferente el método en que se procesan
los datos; pero el objetivo que siguen es el mismo, hacer llegar al canal de comunicacién
el resultado. Este proceso se muestra de forma general en la figura 3.3. Se tienen los da-

Archivo Archivo
original congruente
caon el ariginal
A
Y
Compresion ——» Canal Descompresion

Figura 3.3: Diagrama de bloques basico de compresion, elaboraciéon propia.

tos originales, se procesan mediante algoritmos de compresion y el resultado se almacena
localmente o se realiza la transmision del archivo (esto no compete al esquema de com-
presion, sino al manejo del mismo archivo por el sistema gobernante). Finalmente, cuando
se requieren los datos originales, se emplean algoritmos de descompresion compatibles con
los utilizados en compresion, obteniendo datos congruentes con los originales.

La arquitectura propuesta para comprimir se puede descomponer en tres grandes apar-
tados, los cuales son:

1. Unidad de compresion: Disenada como un moédulo especifico dentro del FPGA, se
encarga de aplicar el algoritmo basado en LZ77 mediante una configuracién en pa-
ralelo.

2. Pipeline para procesamiento continuo: El diseno utiliza un pipeline para garantizar
un flujo constante de datos, maximizando el rendimiento en tareas de compresion y
reduciendo la latencia.

3. Gestion de memoria: Se integran buffers locales para manejar fragmentos de da-
tos y minimizar accesos redundantes a la memoria externa, mejorando la eficiencia
energética y reduciendo los tiempos de espera.

Cada uno de ellos con diversas funcionalidades y alcance particular, lo cual permite
tener las siguientes ventajas:

CAPITULO 3. ANALISIS 37

1. Arquitectura escalable: en principio bajo una misma tarjeta de desarrollo de acuerdo
a sus capacidades soportadas, modificando el niimero de nodos utilizados en la matriz
de procesamiento de datos implementada.

2. Modular: Se busca realizar la arquitectura mediante modulos, para poder realizar las
adaptaciones o modificaciones necesarias que surjan en cada apartado sin necesidad
de una reingenieria de toda la arquitectura, manteniendo, corrigiendo y mejorando
el comportamiento de cada apartado sin afectar al resto.

3. Pruebas unitarias: Cada modulo realiza ciertas tareas que a los demas modulos no
les compete conocer como se hacen. Con este enfoque, se logra realizar pruebas
individuales sobre los datos que se especifica debe recibir y generar cada uno, para asi
poder corroborar el correcto funcionamiento de cada modulo de forma independiente.

4. Carencia de un sélo punto de fallo: permite que, en caso de que exista algun fallo
en el prototipo, s6lo sea necesaria la sustitucion del componente que lo presenta,
manteniendo al resto sin afectaciones.

Para poder construir la lista de funcionalidades que la arquitectura debe tener y como parte
del analisis, se define primero cémo funciona el algoritmo en el cual se basa el trabajo.

3.3.1. Definicién de casos de prueba

Para evaluar la arquitectura propuesta, se consideraron pruebas especificas para medir
su funcionalidad, eficiencia y robustez bajo diferentes condiciones. Estas pruebas se lleva-
ran a cabo utilizando archivos de compresion estandar ampliamente reconocidos, como los
definidos por el Canterbury Corpus y el Calgary Corpus, que proporcionan datos repre-
sentativos con diversas caracteristicas estadisticas. A continuacion, se detallan los casos de
prueba organizados por métricas clave:

1. Tiempo de compresion
2. Tasa de compresion

3. Consumo energético

Tiempo de compresion

El tiempo de compresion del sistema se medira utilizando temporizadores integrados
en el entorno de pruebas del FPGA. Para ello, se cargaran archivos de prueba con tamanos
desde 4Kb hasta 1Mb, seleccionados del Canterbury Corpus para garantizar una represen-
tacion balanceada de datos repetitivos y aleatorios. Cada archivo sera procesado con una
ventana deslizante de 64 kB, de acuerdo con las especificaciones del diseno.

Los tiempos de inicio y finalizacién de la operacion de compresion se registraran con
precision de nanosegundos, tomando en cuenta la frecuencia de operacion del FPGA, con-
figurada a 200 MHz. Estos datos permitiran calcular la velocidad promedio de compresion
en MB/s. Se espera que el sistema alcance velocidades superiores a 200 MB /s, basadas en
la paralelizacion proporcionada por las matrices sistélicas y la capacidad logica del Artix-7

XC7A200T [76].

CAPITULO 3. ANALISIS 38

Tasa de compresion

La tasa de compresion se evaluara comparando los tamanos de los archivos originales
y comprimidos. Para cada archivo de entrada, el sistema generara un archivo comprimido
cuya relacion de tamano sera calculada como R = Ta%:;}i“;fgf;;f} 55+ Este andlisis se realizard
utilizando archivos con diferentes caracteristicas, como: - Archivos altamente repetitivos
(por ejemplo, aaa.txt del Canterbury Corpus). - Archivos de alta entropia, como datos
generados aleatoriamente. - Mezclas intermedias, como textos con estructura seméantica
(bible.txt del Calgary Corpus).

Los resultados serdn comparados con las tasas obtenidas por compresores LZ77 en soft-
ware, como gzip y zlib, para validar la consistencia del sistema. Se espera que la eficiencia
del hardware, basada en la busqueda paralela de coincidencias, con tasas equivalentes o

superiores, con una reduccion significativa en el tiempo de procesamiento.

Consumo energético

El analisis se realizara empleando las herramientas especializadas de estimacion y simu-
lacion de potencia disponibles en el entorno Vivado, asi como parametros técnicos derivados
de las caracteristicas del FPGA Artix-7 XC7A200T. Este analisis incluye tanto la poten-
cia estatica como la dinamica, siendo estas las principales contribuyentes al consumo total
[77].

Para la estimacion de consumo, se utilizard la herramienta Report Power de Vivado
en la etapa post-route, donde ya se han definido los recursos de interconexiéon y las res-
tricciones temporales del diseno. Esta herramienta permite analizar de manera precisa la
actividad interna del circuito, ya que utiliza el archivo SAIF (Switching Activity Inter-
change Format en inglés), generado a partir de simulaciones representativas del sistema.
Dichas simulaciones emplearan datos de entrada de Canterbury Corpus.

El archivo SAIF contendré informacion detallada sobre la actividad de los nodos del
circuito, incluyendo la probabilidad estéatica y la tasa de conmutacion de senales. Esto
garantiza que la estimacion de consumo energético sea coherente con el caso de uso tipico
del sistema, donde se procesan flujos de datos de alta velocidad y se busca mantener una
frecuencia de operacion constante de 200 MHz.

Ademés, el analisis incluird la evaluacion de pardmetros ambientales en la herramienta
Report Power, como la temperatura de union (junction temperature) y el flujo de aire. Se
configurard una temperatura tipica de operacion de 60 °C y se asumird un flujo de aire
nulo (ya que no tendra disipacion activa). Los voltajes de alimentacion se mantendréan en
sus valores predeterminados, ajustados al estandar del Artix-7.

Como resultado se generard un reporte textual. Este informe contendra un desglose
detallado del consumo total, separando en componentes dinamicos y estaticos. La potencia
dindmica se analizard en funcion de la actividad de las senales, mientras que la potencia
estatica estara influenciada principalmente por las caracteristicas del proceso de fabricacion
del FPGA y las condiciones térmicas.

Este enfoque busca comprender el consumo energético teérico que la arquitectura pro-
puesta tendra, permitiendo identificar areas potenciales de optimizacion en el diseno. Los
resultados se utilizaran como referencia para futuras iteraciones, buscando que el sistema

CAPITULO 3. ANALISIS 39

sea eficiente desde el punto de vista energético.
Para poder construir la lista de funcionalidades que la arquitectura debe tener y como
parte del analisis, se define primero cémo debe funcionar de acuerdo a sus requerimientos.

3.4. Especificaciéon de requerimientos del sistema

Este apartado detalla los requerimientos del sistema de compresion de datos basado
en hardware, considerando la especificacion IEE 830 [78|. El objetivo es establecer reque-
rimientos funcionales y no funcionales, asi como criterios de verificacion.

3.4.1. Requerimientos funcionales

La arquitectura de hardware propuesta debe cumplir con los siguientes requerimientos
funcionales definidos especificamente para buscar tener un correcto y eficiente procesa-
miento de datos.

1. El sistema debe ser capaz de recibir flujos de entrada de hasta 100 MB/s.

2. El procesamiento de los datos debe realizarse en bloques, con soporte para esca-
labilidad que permita ampliar el tamano del bloque segtin los requerimientos del
sistema.

3. El sistema debe almacenar temporalmente los datos entrantes en buffers internos
para garantizar la continuidad del flujo y prevenir pérdida de informacion.

4. La arquitectura debe implementar una matriz sistoélica en hardware para acelerar las
operaciones de coincidencia de cadenas. Cada elemento de procesamiento (eP) debe
ser capaz de comparar un simbolo de entrada con una sub-cadena del diccionario.

5. El sistema debe generar referencias comprimidas en formato tipo distancia, longitud,
basada en el estandar LZ77.

6. El sistema debe ser capaz de operar con datos provenientes de archivos de texto
plano codificados en ASCII.

7. El sistema debe ser verificable por simulaciéon, generando como salida la tasa de
compresion lograda (relacion entre tamano original y comprimido) y el tiempo total
de procesamiento.

3.4.2. Requerimientos no funcionales

1. El consumo energético total del sistema debe mantenerse dentro del rango de 5 W
a 20 W, en funciéon de la carga de trabajo, siendo eficiente en energia durante la
operacién continua.

2. El diseno debe considerar el uso eficiente de recursos internos del FPGA Artix-7
XCT7A200T.

CAPITULO 3. ANALISIS 40

3. La disipacién de potencia estatica debe ser lo suficientemente baja como para per-
mitir enfriamiento mediante disipacion pasiva.

4. El sistema debe operar de forma estable dentro del rango térmico del FPGA (—40°C
a 85 °C), con pruebas de temperatura realizadas a 25 °C bajo condiciones ambientales.

5. La arquitectura debe ser escalable, permitiendo parametrizar el nimero de eP en
la matriz sistolica y el tamano de ventana, sin exceder los recursos disponibles ni
afectar la frecuencia de operacion.

6. El sistema debe mantener compatibilidad con interfaces estandar ampliamente utili-
zadas (PCle, Ethernet, USB), facilitando su integracion en plataformas heterogéneas
sin adaptaciones estructurales mayores.

7. En pruebas de simulacion, deben generarse reportes automaticos que documenten el
uso de LUTs, FFs, DSPs, y BRAMs, asi como el consumo total estimado de energia
y el margen térmico esperado.

8. En pruebas fisicas realizadas sobre la tarjeta de desarrollo compatible con el XC7A200T,
debe instrumentarse la mediciéon del consumo energético promedio mediante un me-
didor de corriente y voltaje externo, registrando valores bajo carga tipica y méxima.

3.5. Propuesta: Compresor con ventana deslizante

Con base en la teoria de ventana deslizante y una vez definidos los requerimientos a los
que se debe someter la arquitectura. Se disenié un algoritmo que comprima la informacién
expresada en texto plano; de ello se obtendran las operaciones bésicas que debe realizar
la arquitectura. Mas adelante se consideran dichas operaciones para verificar la forma en
que se puede mejorar el proceso implementando ciertas tareas mediante matriz sistolica.
A continuacién, se muestran los pasos y razonamientos surgidos para la propuesta. Una
de las caracteristicas de este método de compresion es que el nivel de compresion depende
del diccionario utilizado, lo que significa que se debe seleccionar un diccionario adecuado.
En algunas propuestas estudiadas se propone un diccionario en inglés, pero este puede
adaptarse segtun los entornos probables del texto a comprimir. La propuesta consiste en
tener un diccionario dindmico, que se ajusta dependiendo del texto a comprimir. Se tienen
las siguientes caracteristicas en la primera version de la propuesta.

1. Entradas: Caracteres codificados en ASCII extendido (0 a 255 caracteres), utilizan
8 bits cada carécter.

2. Diccionario: 4096 bits (512 caracteres).
3. Bloque de entrada: 128 bits (16 caracteres).

4. Proceso: Recorre la entrada de bytes en biisqueda de la coincidencia més grande,
comparandola con el diccionario (previamente almacenado).

5. Salida: Triada (Distancia, Longitud, Caracter).

CAPITULO 3. ANALISIS 41

6. Especificaciones:

a) Distancia limitada a 256.
b) Longitud limitada a 256.
c¢) Carécter varfa entre 0 y 255 (ASCII), utiliza 1 byte.
Ejemplo: Utilizando el diccionario: estancia alrededor dormir eleccion. Considerando al
caracter _ como espacio en blanco para facilidad de lectura. Se muestra en las siguientes

figuras tanto el texto a comprimir, considerando el primer bloque, como el diccionario
propuesto solo para este ejemplo.

Texto a comprimir

G000S008I0S0000E0DNS000S000000n

Primer blogue a comprimir

Figura 3.4: Texto de ejemplo, elaboracion propia.

Diccionario

Posicidn de simbolos 33

Figura 3.5: Diccionario propuesto, elaboracién propia.

De acuerdo con la tabla ASCII extendida [79] se obtuvo la tabla de valores ASCII
para el ejemplo propuesto (ver tabla 3.1), internamente la arquitectura realizard estas
comparaciones. Para el ejemplo se seguiran utilizando letras.

Tabla 3.1: Valores ASCII de los caracteres de ejemplo, elaboracién propia.
Caracter ‘ Valor ASCII Caracter ‘ Valor ASCII Caracter ‘ Valor ASCII

E 69 e 101 1 108
S 115 S 115 - 32

t 116 t 116 e 101
a 97 a 97 S 115
_ 32 c 99 t 116
e 101 i 105 a 97

S 115 0 162 d 100
_ 32 n 110 o 111
1 108 _ 32 46

a 97 d 100

_ 32 e 101

CAPITULO 3. ANALISIS 42

3.5.1. Ejemplo de comparaciones y salidas

Se considerara solo el primer bloque para esclarecer el algoritmo propuesto, se van
obteniendo las acciones que se deben realizar, siendo la comparacion entre cada simbolo
del bloque de entrada y el simbolo del diccionario, se leen desde el byte menos significativo
hasta el byte més significativo. Cabe aclarar que también el diccionario se lee asi y, por
lo tanto, también se debe llenar asi. Considerandose entonces el diccionario real como el
mostrado en la figura 3.6 . En la tabla 3.2 se recaba el resultado de la compresion de los
primeros 6 simbolos del bloque (estado), en la salida se emite el indice y la distancia de la
coincidencia dentro del diccionario. A diferencia de LZ77 la propuesta no emite el tercer
valor, ya que se puede obtener facilmente por los indices y disminuye el almacenamiento
requerido en un byte por coincidencia encontrada. El apartado de comparacion se tienen
las siguientes opciones (Las abreviaturas utilizadas son para facilitar la lectura de la tabla
y no cambian en nada el funcionamiento del algoritmo propuesto):

1. Comparar siguiente simbolo (CSS).
2. Coincidencia encontrada y comparar simbolos siguientes (CESS).

a) Fin de bloque, no existen méas simbolos, emitir a salida coincidencia encontrada
(FB).

b) Fin de bloque, no se pueden buscar mas coincidencias, emitir a salida coinci-
dencias acumuladas encontradas (FBEC).

¢) Fin de bloque de diccionario, no se pueden buscar més coincidencias, emitir a
salida coincidencias acumuladas encontradas (FBDC).

3. Coincidencia no encontrada y escribir literal (CNEL).

Posicidn de simbolos 33

Figura 3.6: Diccionario con posiciones corregidas, elaboracion propia.

La tabla con la comparacion de solo cinco simbolos muestra que se debe considerar
un diccionario 6ptimo para cada texto a comprimir, de lo contrario resultaria un archivo
comprimido de mayor peso que los datos originales, siendo que la tupla resultante por
cada coincidencia ocupa mas bytes que el mismo simbolo comprimido, esto se aprecia en
la salida de la tabla 3.2 donde todas los simbolos se encuentran en el diccionario con
palabras aleatorias, pero en todos existe una distancia de 1, por lo tanto el diccionario no
es Optimo ya que no se encuentran frases en él. Por ello se propone tener un diccionario
dinamico para que se adectie a cada texto de mejor forma que un diccionario aleatorio.

CAPITULO 3. ANALISIS 43

Tabla 3.2: Decision con seis simbolos, elaboracién propia.

Comparaciéon Decision Salida

o:e CSS

0:s CSS

o:t CSS

0:0 CESS 16,
FB 16,1

d:e CSS

d:e

d:d CESS 13,

o:e CNEL 13,1

a:a CESS 3,

d:t CNEL 3,1

tot CESS 2,1

S:S CESS 1,1

e:e CESS 0,1

3.5.2. Diccionario dindmico

En la busqueda de mejorar el desempenio de la arquitectura propuesta, se disenaré un
diccionario dinamico, el cual consiste en un conjunto de caracteres; en especifico, conjunto
de caracteres previamente encontrados en el texto y codificados mediante ASCII exten-
dido. Para con ello buscar en los bloques de caracteres posteriores, coincidencias con los
caracteres previamente almacenados.

Se propone el diseno de un diccionario dindmico, se comienza con un buffer vacio, el
cual se va llenando a medida que se van leyendo los bloques a comprimir. En la figura
3.7 se muestra el llenado del diccionario dindmico para el ejemplo propuesto; también
se corrigieron las posiciones de entrada del bloque. Para representacion y facilidad de
lectura se muestran de izquierda a derecha los dos buffer, internamente se leen de derecha
a izquierda del MSB al LSB.

Es evidente que, si el tamano del primer bloque es menor que el tamano del diccionario,
este quedard completamente contenido en el diccionario. Pero la compresion no es solo de
un bloque y el diccionario se utiliza a lo largo de todos los bloques. Por lo tanto, el
diccionario en un punto estara lleno. Esta investigacion se enfoca en matrices sistolicas,
pero el llenado y adaptacion de diccionarios dinamicos también son un tema de sumo
interés y que tiene atin muchas éreas de oportunidad, para el presente trabajo se utiliza el
diccionario dindmico esencial. Considerando el texto del ejemplo completo (no solo para el
primer bloque) se tienen los resultados recabados en la tabla 3.4. En las figuras 3.8 y 3.9
se observa el llenado del diccionario y los bloques a comprimir.

El ejemplo mostrado con el diccionario dindmico pasa a tener las mejores tasas posi-

CAPITULO 3. ANALISIS

Primer bloque a comprimir @

Texto a comprimir E

Diccionario

Posicion de simbolos n
Figura 3.7: Diccionario dindmico propuesto, elaboracién propia.

Tabla 3.3: Entrada completa, elaboracion propia.

Comparaciéon Decision Salida

E:E CESS

c:c FBEC 0,16
i:E CSS

0:0 FBEC 16,13

Primer blogue a comprimir n

Texto a comprimir

Diccionario

Posicién de simbolos u

Figura 3.8: Diccionario dinamico bloque 1, elaboracién propia.

Segundo bloque a 13
comprimir

oo acompenw (6w [Ja[e [T []e[s[[a]e]o)
Diccionario B[:va‘-’_ els|_|1 a:’_vp.Ts t|a CII[G n _]u|e[|[_[e‘s l]&]d[0|

()

Posicidn de simbolos

Figura 3.9: Diccionario dinamico bloque 2, elaboracién propia.

44

bles de compresion con este método. Pero, este caso es excepcional, solo funcionaria con
un diccionario de mayor tamafio que el texto a comprimir, y esto no es real ni eficiente, ya
que el diccionario se debe agregar al archivo comprimido, convirtiéndose el diccionario en
realidad en el archivo original y necesitando otro archivo para los indices que terminarian

CAPITULO 3. ANALISIS 45

recuperando el mismo archivo. Pero un diccionario dinamico con un tamano adecuado,
aunque no llegue a tener estos niveles de compresion si llega a ser muy ttil, ya que el
diccionario no pesaré lo mismo que el archivo original y la lista de longitudes y distancias
serd mas adecuada que con diccionarios estaticos. En el ejemplo con diccionario dindmico
se paso de un texto que ocupaba 33 bytes a 39 bytes (considerando el diccionario), demos-
trando lo dicho antes, si el diccionario es mas grande, el archivo comprimido terminara
pesando mas que el archivo original. Para efectos de que quede clara la propuesta y se
demuestre que el diccionario dindmico si es una propuesta eficiente, se muestra el ejemplo
considerando un diccionario mas pequeno que la entrada (en la realidad, la mayoria de
los casos seran asi). Considerando solo para el ejemplo un diccionario de un tercio de la
entrada, se tienen los resultados de la tabla 3.4 y en las figuras 3.10 y 3.11 se muestran los
bloques y diccionario dinamico utilizado.

Tabla 3.4: Entrada completa con diccionario dindAmico pequeno, elaboracién propia.

Comparacion Decision ‘ Salida

E:E CESS
a:a FBDC 0,11
B CSS
S:s CNEL 4.3
t:E CSS
a:a CNEL 2,2
c:E CSS

FBEC 0,0
i FBEC 0,0
o) FBEC 0,0
n FBEC 0,0

CESS

FBEC 4.1
d FBEC 0,0
e:e CESS

FBEC 5,1
1 FBEC 0,0

CESS

FBEC 4,3
tot CESS

FBEC 2,2
d FBEC 0,0
0 FBEC 0,0

CAPITULO 3. ANALISIS 46

Primer blogue a comprimir 0
Texto a comprimir Eislt[il;lils _utL'E s'1|'ilij
| Ko B | i W] A |
Diccionario Efs|t)s -n) ﬂ

Posician de simbolos | 0

Figura 3.10: Diccionario dindmico pequeno con bloque 1, elaboracién propia.

Segundo blogue a
comprimir

Texto a comprimir

Diccionario

Posicidn de simbolos n

Figura 3.11: Diccionario dindmico pequeno con bloque 2, elaboracién propia.

Con un diccionario de un tercio del texto, el ejemplo en lugar de ocupar 33 bytes de
almacenamiento resulta de un tamano de 56 bytes. Esto es resultado de comprimir textos
pequenos, y una falta de optimizacion que todavia es posible; es evidente que el método
en general, al igual que muchos otros, tiene carencias para comprimir textos pequenos. El
verdadero potencial se comprueba con archivos de texto reales, que son de mayor tamano en
cuanto a simbolos y siguen patrones en las palabras que utilizan, ahi es donde el compresor
propuesto basado en ventana deslizante debe demostrar su eficiencia. Con el algoritmo a
desarrollar analizado, se debe tener en cuenta también el hardware de pruebas utilizado.

3.6. Descripcion del algoritmo de compresion en hard-
ware

La investigacion se enfoca en la mejora del proceso de compresion mediante el diseno
de hardware dedicado. El traslado de un algoritmo de software a una implementacién en
hardware no implica que su desempeno sea superior por el simple hecho de estar implemen-
tado en hardware. Por este motivo, una etapa inicial consiste en la especificacion directa
del algoritmo original en un lenguaje de descripcion de hardware (HDL), replicando las
operaciones en software. Este enfoque permite identificar las limitaciones inherentes al al-
goritmo pensado para software cuando se ejecuta en hardware, asi como evaluar como los
recursos y caracteristicas del hardware pueden explotarse para mejorar su rendimiento.

Una metodologia ampliamente aceptada para optimizar algoritmos en hardware con-
siste en implementar primero una version base del algoritmo, que respete estrictamente
la logica secuencial utilizada en software. Desde este punto de partida, se analizan las

CAPITULO 3. ANALISIS 47

areas criticas del proceso, como el manejo de datos, las dependencias internas y las ope-
raciones que se prestan a la paralelizacion, como bloques DSP, memorias internas o légica
configurable.

Al establecer un diseno inicial directamente en HDL, se puede tener un anélisis mas
profundo de las capacidades del hardware frente a las limitaciones del software, facili-
tando la identificacion de estrategias especificas para mejorar la eficiencia del proceso de
compresion.

3.6.1. Mobdulos y funcionalidades

El codificador a disenar consta de varios moédulos interconectados para realizar compre-
sion de texto, basado en la ventana deslizante, incluyendo el manejo de datos de entrada,
bisqueda de coincidencias y generacion de datos de salida.

1. Moédulo de entrada: Este moédulo gestiona la recepcion de los datos de entrada.
Implementa un FIFO para almacenar temporalmente los datos entrantes.

2. Modulo de buisqueda: Se realiza mediante matriz sistolica, para poder buscar coinci-
dencias comparando los simbolos con el diccionario de forma paralela.

3. Modulo de Salida: Después de identificar las coincidencias, este modulo genera los
datos de salida. Esto incluye la posicion y longitud de las coincidencias y los simbolos
literales para casos donde no se encuentran coincidencias.

3.6.2. Magquina de estados

La maquina de estados del codificador base administra las transiciones entre los diversos
modulos y coordina las operaciones de codificacion. Los estados principales a disenar se
pueden ver en la figura 3.12, estos incluyen:

1. IDLE: Estado inicial en el que el sistema se prepara para la recepcion de datos.

2. INPUT: Estado donde se cargan datos en el buffer y se preparan para el procesa-
miento.

3. SEARCH: Estado que activa la matriz de busqueda para identificar coincidencias.

4. OUTPUT: Estado en el cual los resultados de la biisqueda se codifican y preparan
para la salida.

3.6.3. Optimizaciones y rendimiento

El diseno inicial del sistema esta configurado para emular la légica de software, pro-
porcionando una base para identificar areas donde el hardware puede ofrecer mejoras
significativas. Posibles optimizaciones incluyen el ajuste en la busqueda y administracion

CAPITULO 3. ANALISIS 48

Coincidencias encontradas

Figura 3.12: Maquina de estados base de compresor, elaboraciéon propia.

del diccionario, asi como la parte medular de este trabajo; se buscaréd mejorar el aprove-
chamiento del hardware mediante matrices sistolicas en el apartado de bisqueda y compa-
racion. El diseno generado inicialmente se utiliza como base para realizar las adecuaciones
necesarias y verificar las mejoras hechas contra el primero.

3.7. Descripcion del algoritmo de descompresion en hard-
ware

Se especifico también el decodificador, que descompone los datos comprimidos y recu-
pera la informacion original; esto para corroborar que los datos que se trataron en verdad
puedan ser recuperados; se disen6 en Verilog. A continuacién, se presenta un analisis de
este sistema, considerando la teoria a la que se debe apegar. Aunque el descompresor no
estaba contemplado en la propuesta original de investigacion, se decidié no limitarse a
una simple transcripcion del software al hardware. En su lugar, se optd por desarrollar
una version propia, adaptada a las caracteristicas del hardware y basada en la teoria de
ventanas deslizantes. Por lo tanto, es necesario implementar también un descompresor que
permita validar tanto la eficacia de la compresion como la correcta recuperaciéon de los
datos.

3.7.1. MaAquina de estados

Estos estados facilitan la organizacion del flujo de datos y la sincronizacion del proceso
de decodificacion; el diagrama planeado de su funcionamiento se muestra en la figura 3.13.
El nicleo del decodificador es una maquina de estados finitos (FSM) que controla el proceso
de decodificacion a través de varios estados clave:

= IDLE: Espera activa para inicio de datos.
» INPUT: Recepcion y registro de los datos comprimidos.

» DECODE1 y DECODE2 1/2: Decodificacion de los datos, donde DECODEL1
maneja datos directos y DECODE2 maneja la expansion de referencias de coinciden-
cia.

» FINISH: Finalizacion del proceso de decodificacion.

CAPITULO 3. ANALISIS 49

Daros listos, Reset-Error
DECODEL

Reset-Finalizar Reset-Error

Decodificar Tokens Dr: sodificar Tt l\r:n/

DECODE2 1

Decodificacia ﬂ(.omplem Decodificacion Completa

FINISH

Figura 3.13: Maquina de estados base de descompresor, elaboraciéon propia.

3.7.2. Implementacion y funcionalidad

El decodificador utiliza un buffer circular y varios registros para manejar la informaciéon
de desplazamiento y longitud. La légica implementada en Verilog se encarga de extraer
estos valores de los datos de entrada y utilizarlos para reconstruir la informacién original
a partir de fragmentos previamente decodificados y almacenados en el buffer.

3.8. Construccion de la lista de funcionalidades

Conforme a lo descrito en la seccion metodologica, el diseno de la arquitectura se estruc-
turd a partir de representaciones visuales mediante diagramas de bloques. Estos diagramas
permiten abstraer y modelar los modulos (representados por bloques) de mayor relevancia
de la arquitectura propuesta, donde cada bloque corresponde a una etapa especifica de la
misma. Las conexiones entre los bloques, representadas mediante flechas, reflejan los flujos
de datos y senales entre modulos, facilitando la comprension del comportamiento global del
sistema, asi como las dependencias entre las entradas y salidas de cada componente. Esta
representacion resulta fundamental para garantizar una vision estructurada y coherente
del diseno a nivel de sistema.

La construccién de la lista de funcionalidades se realizé considerando los médulos inter-

CAPITULO 3. ANALISIS 50

conectados que tiene la arquitectura propuesta, cada uno con funcionalidades especificas
que contribuyen al flujo de compresion.

Cada uno de estos moédulos opera de manera coordinada para garantizar que la arqui-
tectura cumpla con los requisitos funcionales y no funcionales definidos. En la figura 3.14
se observa el primer diagrama disenado para la arquitectura, donde la figura 3.15 es la
correccion de ello. Se cambi6 el diagrama para no romper con la generalidad y con ello ser
mas entendible. Algunos nombres de modulos fueron reescritos para ser mas adecuados a
la tarea que llevan a cabo dentro de la arquitectura, aunque dan la impresion de funcionar
en forma secuencial, en el detalle del médulo de bisqueda de coincidencias se aprecia el
paralelismo de la arquitectura.

Elemento de
—p ! -
procesamiento

Elemento de

procesamiento Generador de

Cadigo
comprimido

Buffer de
busqueda

Entrada de
datos

Blogue de
| decision de
coincidencias

|

v v

Elemento de
procesamiento

Elemento de
procesamiento

v

Figura 3.14: Diagrama de bloques de arquitectura inicial, elaboracién propia.

. Gestion de - Blogue de Generador de
Preprocesamiento = Blsqueda de o P
de datos > cond,'mones de coincidencias > d?c'.smn qe > COd.'g(?
busqueda coincidencias comprimido

Figura 3.15: Diagrama de bloques de arquitectura corregido, elaboracion propia.

A continuacion, se describen las funcionalidades asociadas a cada modulo del sistema.

3.8.1. Preprocesamiento de datos

Es responsable de recibir y almacenar temporalmente el flujo de datos proveniente de
la interfaz externa, para ser procesado por la arquitectura. Este médulo incluye un buffer
FIFO disenado para manejar una tasa de entrada de hasta 200 MB/s. El buffer organiza
los datos en bloques de tamano configurable, con soporte inicial para 128 bytes, y prepara
estos bloques para su transmision al médulo de procesamiento principal.

CAPITULO 3. ANALISIS 51

3.8.2. Gestion de condiciones de biisqueda

Maneja el diccionario necesario para la operacion del algoritmo de ventana deslizante.
Este moédulo almacena los datos previamente procesados en un buffer implementado en
la RAM interna del FPGA. El buffer debe mantener una estructura de cola circular que
permita almacenar los ultimos m bytes procesados, donde m corresponde al tamano de
la ventana deslizante. El buffer también se encarga de sincronizar las transferencias entre
el preprocesador y la matriz sistolica, buscando que no se produzcan interrupciones en el
flujo de datos.

3.8.3. Busqueda de coincidencias

Es implementado como una matriz sistélica de elementos de procesamiento; es el niicleo
del sistema. Cada elemento de procesamiento (eP) de la matriz es responsable de realizar
comparaciones entre las sub-cadenas del buffer de busqueda y los bloques del flujo de
entrada. Este modulo esta disenado para operar en paralelo, procesando miltiples simbolos
de entrada simultdneamente en cada ciclo de reloj. Los PEs realizaran operaciones como
la comparacion de sub-cadenas, el calculo de longitudes de coincidencia y la propagacion
de resultados parciales hacia las celdas adyacentes.

3.8.4. Bloque de decisién de coincidencias

Toma los resultados parciales generados por la matriz sistolica y determina cual es
la coincidencia més larga encontrada en la ventana deslizante. Este moédulo compara las
longitudes de coincidencia y selecciona aquella con el valor mayor, obteniendo su posiciéon
correspondiente en el diccionario.

3.8.5. Generador de c6digo comprimido

Recibe las decisiones del bloque de coincidencias y construye las referencias comprimi-
das. Estas referencias incluyen el desplazamiento relativo, la longitud de la coincidencia y
el simbolo literal subsecuente. El médulo debe empaquetar estas referencias en palabras
de datos de salida. Adicionalmente, este médulo debe manejar el flujo de salida de ma-
nera continua, asegurando que los datos comprimidos estén listos para su transmision o
almacenamiento inmediato.

3.9. Planeacién por funcionalidades

Se define la planeacion técnica de las actividades a desarrollar a lo largo de los semes-
tres A2025 y B2025, se considera la planeacion general del cronograma propuesto y se
refina dentro de esos plazos las tareas que se deben realizar. Esto abarca el desarrollo y la
optimizacion de los modulos de la arquitectura, desde septiembre hasta junio del ano aca-
démico siguiente para el diseno preliminar, la integraciéon de arquitectura, finalizando con
la realizaciéon de pruebas y optimizaciones que se requieran. A continuacién, se presentan
las actividades por médulo de acuerdo con los objetivos y las funcionalidades especificadas.

CAPITULO 3. ANALISIS 52

3.9.1. Diseno y desarrollo de médulos (Septiembre - Diciembre)

1.

Moédulo preprocesamiento de datos: En septiembre, se debe iniciar con el diseno
del modulo de entrada de datos. Este modulo es la entrada a la arquitectura propuesta
y uno de los dos modulos que se conectan con el exterior.

Gestion de condiciones de biisqueda: Durante octubre, se desarrollaré el médulo
de buffer de buisqueda, lo méas relevante de este modulo es la creacion de un siste-
ma eficaz para utilizar el diccionario. Este moédulo se planea implementar con una
estructura de datos que permita un acceso rapido y efectivo a las cadenas pasadas
para una comparacion con la ventana deslizante.

Busqueda de coincidencias: En noviembre, se debe realizar la implementacion
de la matriz sistolica para buscar coincidencias. Esta parte del sistema debe utilizar
algoritmos en paralelo para la identificacion de patrones repetitivos dentro del flujo
de datos.

. Bloque de decisiéon de coincidencias: A inicios de diciembre, se debe realizar la

implementacion del médulo que determina la coincidencia méas larga encontrada en
la ventana deslizante.

Generador de cédigo comprimido: Parte de diciembre se dedicara a integrar
las coincidencias encontradas en un bloque de salida hacia el usuario, preparando el
sistema para las pruebas iniciales de funcionalidad.

3.9.2. Integracion y validacién (Enero - Junio)

A partir de enero y continuando hasta marzo, se realizard una optimizaciéon de cada
moédulo. Esto incluird ajustes finos en la logica de la matriz sistolica en la FPGA y las
correcciones necesarias.

1.

Integracién y sincronizacién de moédulos: Parte de enero se dedicara a integrar
los modulos previamente desarrollados. Esta etapa es importante porque los moédulos
de entrada, busqueda y buffer deben trabajar de forma cohesiva y sincronizada,
preparando el sistema para las pruebas iniciales de integracion.

Pruebas de concepto y simulaciones: En abril, se llevardn a cabo pruebas de
concepto completas y simulaciones detalladas para validar la efectividad de la ar-
quitectura compresora. Estas pruebas ayudaran a identificar cualquier deficiencia o
necesidad de mejora adicional.

Preparacion y revision de la documentaciéon: Mayo se dedicara a la redaccion
detallada de los resultados y procesos en el documento final de la tesis. Ademas, se
realizaran correcciones basadas en retroalimentaciones del comité tutorial.

Finalizacién y presentaciéon del proyecto: Junio serd el mes donde se finalicen
todas las actividades, incluyendo una tltima revision y la presentacion del proyecto
al comité evaluador, demostrando la funcionalidad y eficiencia del codificador en
hardware.

Capitulo 4
Diseno

Se desarroll6 el diseno de cada modulo de acuerdo con la planeacion por funcionalidad.
El siguiente diagrama de bloques muestra de forma general la arquitectura propuesta. Se

1 2 3 4 5

Flua de datces a
camgnmir Preprocesamients | g o ge dains Simbalos Blsgueda de D_ecu_sur‘)n de Tupla Generador de

——— | de entrada de | condiciones de coincidencias coincidencias ! cadigo

datos bisqueda comprimido

Gestidn de

v

v

h 4

Langiud

A P de datos :an(imino'.i

Segmentns de decorang

v

| D1 | Diccionano |—

Figura 4.1: Diagrama de arquitectura propuesta, elaboracion propia.

describe a detalle el disenio de la arquitectura y posteriormente se especifican las carac-
teristicas de cada modulo. La arquitectura disenada, por su naturaleza de conectarse al
exterior, requiere la integracion de un moédulo que gestione la entrada de datos, asi como
el manejo de la salida de datos comprimidos. Estos componentes, aunque funcionalmente
necesarios, no constituyen el interés principal de la investigacion presente. Se considera la
segunda etapa de desarrollo, después de realizar la propuesta en el apartado de anélisis y
llegar a las operaciones atémicas, en este apartado se busca detallar en lo posible, como
se implementaron estas operaciones, adaptdndose al desarrollo en hardware. La esencia de
este estudio se centra en el analisis y disenio de una matriz sistélica, que es el médulo mas
importante de la arquitectura. La matriz sistoélica, que por su diseno facilita una ejecuciéon
eficiente y escalable, aprovecha una topologia que permite el procesamiento paralelo. Este
enfoque no solo mejora el rendimiento, sino que también optimiza el uso del ancho de ban-
da y disminuye la latencia de la comunicacién interna, resultando en un sistema eficiente
para la compresion de datos. Se describe a detalle el disenio de la implementacion de la
matriz sistolica propuesta.

4.1. Diseno de matriz sistolica

La matriz sistolica se utiliza para comprimir los datos introducidos, y para ello se utilizo
en parte del diseno de un algoritmo basado en una ventana deslizante. Donde se busca
y compara cada simbolo de entrada con un diccionario. A partir de esto, se asignan la

53

CAPITULO 4. DISENO 54

longitud y la distancia donde se encuentran las coincidencias. El siguiente diseno abarca el
modulo de gestion de condiciones de bisqueda, la biisqueda de coincidencias y el de decision
de coincidencias. En la implementaciéon propuesta se tienen dos buffers principales, el
diccionario y el bloque de simbolos, ambos representados como vectores de bits de tamano
(4096 bits y 128 bits respectivamente) lo que es lo mismo que un diccionario de 512 simbolos
y un bloque de anticipacion de 16 simbolos. Cada buffer se dividié internamente en bytes
de 8 bits cada uno. Esto para poder realizar las manipulaciones necesarias de cada byte
de memoria de forma independiente dentro del médulo. Para poder tener acceso directo
a cada byte se define el cableado hacia cada buffer, este enfoque va de la mano con la
organizacion de cada vector y poder realizar la comparacion byte a byte entre los buffers.
Después de tener cada byte asignado y configurado para poder acceder a ellos, se compara
cada segmento del buffer de busqueda con cada byte del buffer de adelantamiento (cada
simbolo se busca en el segmento del diccionario asignado). En esta etapa de prueba se
dividié en 16 el diccionario, para que cada matriz sistolica de elementos de procesamiento
busque en cada segmento de él. En la tabla 4.1 se muestra como se dividi6 el diccionario
para enviar un segmento a cada elemento de procesamiento, siendo 32 simbolos codificados
en ASCII extendido la longitud de cada segmento de diccionario enviado a cada elemento
de procesamiento.

Tabla 4.1: Segmentos en los que se divide el diccionario, elaboracién propia.

ID Segmento Valor maximo Valor minimo

1 255 0

2 011 256
3 768 012
4 1024 769
5 1280 1023
6 1536 1279
7 1792 1535
8 2048 1791
9 2304 2047
10 2560 2303
11 2816 2559
12 3072 2815
13 3328 3071
14 3584 3327
15 3840 3583
16 4096 3839

Dentro de cada elemento de procesamiento se compara el segmento de diccionario y
simbolo asignado, se detalla su funcionamiento en la siguiente secciéon. Los indices resul-
tantes de cada elemento de procesamiento se revisan para obtener la posicién del simbolo
que coincide dentro del segmento de diccionario, entre este y simbolo. Esta posicion se
calcula utilizando una cascada de operadores ternarios que seleccionan el primer indice
con un valor diferente de cero, anadiendo un desplazamiento basado en la posicion de la

CAPITULO 4. DISENO 55

igualdad encontrada dentro de cada segmento de 32 bytes para saber exactamente en qué
posicion del diccionario original se encontroé esa coincidencia. Adicionalmente, la logica pa-
ra determinar la longitud de coincidencia se disené mediante el calculo de un XOR entre el
diccionario y el bloque de los simbolos usando el indice calculado, permitiendo identificar
exactamente donde ocurren discrepancias entre los buffers. Las discrepancias se procesan
para determinar la posicién de la primera coincidencia, que a su vez se utiliza para esta-
blecer la longitud de coincidencia. Esta longitud se establece en cero si hay un fallo en las
coincidencias. Finalmente, uno de los aspectos basicos al disenar una arquitectura y que
evita los latches, es la utilizacion de relojes para mantener sincronizaciéon entre los moédulos
de la arquitectura, en este caso se busca utilizar las mejores practicas conocidas de diseno
HDL, teniendo solo actualizaciones en el flanco positivo del reloj o en un reset negativo,
para garantizar la estabilidad de los datos durante las operaciones de comparacion.

4.1.1. Elementos de procesamiento

El elemento de procesamiento (eP) se diseno de acuerdo con la teoria de matrices
sistolicas. Siendo descrito cada eP para realizar una tarea muy especifica, que es evaluar
la coincidencia de un solo simbolo. Teniendo cada eP su propia memoria para almacenar
su diccionario y el simbolo que debe comparar. Estos eP conforman la matriz sistélica,
donde todos los eP son idénticos, teniendo asi una configuracion para realizar la busqueda
de coincidencias en paralelo. Con ello, cada paso de la comparacion y asignacion se realiza
en un solo ciclo de reloj. Demostrando asi que se pueden utilizar en paralelo varios eP,
haciendo que el disenio sea escalable, segmentando en tantas partes el diccionario como se
tengan eP en la matriz sistolica. Cada elemento de procesamiento se disen6 con un buffer de
8 bits para cada simbolo, un buffer de 256 bits para su seccién asignada del diccionario. La
comparacion dentro de cada eP se realiza de manera secuencial, buscando una coincidencia
exacta entre el byte de adelantamiento y cada byte del buffer de busqueda. La estructura
del modulo se detalla a continuacion:

= Definicion e inicializacion de variables: Se define el diccionario como un arreglo de
32 elementos, donde cada elemento tiene 8 bits (256 bits en total). Este arreglo es
llenado por la secciéon del diccionario que se le envi6 al eP.

= Proceso de comparacion: La comparacion del simbolo y el diccionario se realiza uti-
lizando una serie de operadores condicionales (si, entonces), que son evaluados de
manera secuencial (se estan realizando pruebas con asignaciones bloqueantes, en
breve se pondré a prueba el funcionamiento con asignaciones no bloqueantes para
realizar comparaciones en paralelo y ver si mejora la eficiencia del eP realizando
comparaciones entre los 32 simbolos del diccionario y el simbolo de forma paralela).
Se describi6 que, si existe una coincidencia en el indice, se almacena ese indice.

= Asignaciéon de resultados: Se tiene también una bandera en el funcionamiento de
cada eP que indica cuando no encontr6 ninguna coincidencia.

= Manejo de salidas: La salida de cada eP es un vector de 5 bits que puede representar
valores de 0 a 31 (los indices de coincidencias posibles dentro del diccionario) y la

CAPITULO 4. DISENO 56

bandera que indica que no se encontré coincidencia (Ya que la bandera activa existe si
y solo si no se encontraron coincidencias, se escribe sobre el mismo vector la bandera
que es el namero 32, imposible que las coincidencias den ese niimero y manteniéndose
seguro el disenio, a su vez que se optimiza el diseno de la arquitectura.

CAPITULO 4. DISENO 57

4.2. Moédulo de preprocesamiento de datos

Con el disenio principal bien definido. se especifica los detalles de cada moédulo que
forma parte de la arquitectura. El médulo de preprocesamiento de datos se encarga de la
recepcion y la adecuacion de los datos. A continuacion, se detalla el diseno de este modulo,
incluyendo sus componentes principales y las especificaciones.

| Al |Almacén para datos de salida |

A 4

1.1 1.2
Flujo de datos a
mi > s ias d .
comprimir Gestién de datos | ~*noe® ™ Segmentador de | gloque de datos Gestion de
—_Pp de entrada e datos ———— | condiciones de

blsqueda

Figura 4.2: Diagrama de mo6dulo de preprocesamiento, elaboraciéon propia.

Funcion

Este modulo tiene como funcién principal recibir el flujo de datos desde una interfaz
externa y organizar estos datos en bloques para su posterior procesamiento. Actia como
el primer punto de contacto para los datos entrantes, almacenandolos temporalmente.

Compatibilidad y codificacién
= Formatos de entrada: El modulo es compatible con formatos de texto de entrada
codificados en ASCII extendido, lo que permite que sea un compresor que soporte
datos de entrada reales, ya que soporta caracteres especiales.

Entradas y salidas

» Entrada: Flujo de datos: Los datos ingresan al médulo en formato de 8 bits por
simbolo, adecuado para manejar el formato de texto codificado en formato ASCII
extendido.

= Salida: Se envia un bloque de 128 bits de datos al siguiente modulo.

4.3. Mobdulo de gestiéon de condiciones de buisqueda

Este modulo es responsable de manejar el diccionario y el buffer de coincidencias. A
continuacion, se detallan sus componentes, funcionalidades y especificaciones técnicas.

CAPITULO 4. DISENO 58

D1 | Diccionario |
Actualizacion de diccionario
Lectura de diccmnan’ol

2.1

Preprocesamiento Bifila A ik Gestor de Blogue de datos

de entrada de ~————pp| diccionario
datos

Blsqueda de
coincidencias

Figura 4.3: Diagrama de modulo de gestion de condiciones de busqueda, elaboracion propia.

Funcién

Este modulo opera como el niicleo de almacenamiento y busqueda para el codificador,
manteniendo las secuencias recientes y proporcionando acceso al diccionario para que la
matriz sistélica busque coincidencias en las cadenas. Es importante para la implementacion

del algoritmo de ventana deslizante, permitiendo que las coincidencias encontradas no se
vuelvan a procesar innecesariamente.

Especificaciones del buffer

= Doble buffer: En el desarrollo de la arquitectura propuesta, se busca incorporar
como parte de las mejoras propuestas para el siguiente semestre un enfoque que
combina las mejores caracteristicas de disenos estudiados para buscar obtener el
aprovechamiento del hardware de desarrollo. Se realiza la implementacion de un sis-
tema de buffer doble al que tiene acceso el modulo de gestion de condiciones de
busqueda. Este sistema se compone del clésico diccionario utilizado en ventanas des-
lizantes, para asignar a cada elemento de procesamiento una parte de él y un buffer
secundario que almacena las coincidencias recientemente aceptadas. La introducciéon
de este buffer adicional busca una mejora del rendimiento, especialmente en esce-
narios donde se encuentran repetidamente los mismos caracteres. En tales casos, el
sistema no requiere volver a consultar el diccionario para cada simbolo repetido. En
su lugar, las coincidencias previamente identificadas se transfieren directamente al
modulo de decision. Este modulo estaré disenado con la loégica necesaria para ma-
nejar estas situaciones, facilitando un proceso mas rapido y reduciendo la carga de
procesamiento simbolo por simbolo. Este diseno se pretende sea un paso adicional
para minimizar la redundancia en el manejo de datos, lo que se traduce en una mayor
rapidez en la compresiéon y una mejor utilizacion de los recursos del hardware.

» Capacidad ajustable: El tamano del buffer es ajustable segiin el tamano de la
ventana deslizante definida, con una capacidad por defecto de 4096 bits para el apar-
tado del buffer de buisqueda. Esto es configurable segiin las necesidades especificas
del sistema y puede ser incrementado para adaptarse a ventanas de tamano mayor.

CAPITULO 4. DISENO 59

Implementacion en la FPGA

El buffer esta implementado en los registros interna del FPGA, utilizando una estruc-
tura de cola circular que permite gestionar eficientemente los tltimos m bytes procesados,
donde m es el tamano de la ventana deslizante.

Entradas y salidas

» Entrada:

e Datos del médulo de entrada: Los datos se reciben del moédulo de prepro-
cesamiento en un bloque de 128 bits, a su vez que actualiza el diccionario y lee
desde el con una capacidad de 4096 bits inicialmente.

s Salida:

¢ Bloque de datos hacia la matriz sistélica: Los bloques de datos procesados
son enviados a la matriz sistélica para la biisqueda de coincidencias a su vez
que se deja listo el diccionario en segmentos de 256 bits para su futura lectura.

Sincronizaciéon y gestion de flujo de datos

El modulo también se encarga de sincronizar las transferencias entre el preprocesador
y la matriz sistélica. Por lo cual deben mantener una constante lectura de datos desde
el preprocesador a su vez que mantiene la generacion de datos para los elementos que
conforman la matriz sistolica.

4.4. Mobdulo de basqueda de coincidencias

Este modulo utiliza una matriz sistolica de elementos de procesamiento (ePs), es esen-
cial en la propuesta. La matriz estd enfocada en realizar operaciones en paralelo para
lograr el procesamiento en simultaneo de miiltiples simbolos de entrada. A continuacion,
se especifican las caracteristicas de este modulo.

| Dl| Diccionario | - 3.2 3.2
>
Lectura de diceionario elementode (... elemento de R
‘L — comparacion P comparacion
31 Sagmantn da
dcoonarnia
G;_St_m" ded Bloque de datos | Segmgn[tador de | seqmento de tioque Decision de
condiciones de » atos . ;
. coincidencias
bisqueda 3.2 3.2
0 de blaque
= elemento de . elemento de
T e G d |
dccionirio —p| comparacion | comparacion
»

Figura 4.4: Diagrama de moédulo de busqueda de coincidencias, elaboracién propia.

CAPITULO 4. DISENO 60

Arquitectura y funcionalidad

Cada eP en la matriz estéa interconectado de manera que puede recibir y enviar informa-
cion a sus vecinos inmediatos. Esta disposicion permite que las operaciones se realicen de
manera fluida y coordinada a lo largo de toda la matriz, disminuyendo el tiempo empleado
en buscar y comparar.

4.4.1. Operaciones de los ePs

= Comparaciones sub-cadena: Cada eP realiza comparaciones entre segmentos del
buffer de busqueda y bloques del flujo de entrada. Estas comparaciones se realizan
mediante circuitos comparadores logicos integrados en cada eP.

= Calculo de longitudes de coincidencia: Los eP dan el indice de la coinciden-
cia encontrada dentro de su segmento de diccionario, asi se puede determinar es la
repeticion de datos en el flujo de entrada comparado con el diccionario.

Propagacion de datos

Los datos se propagan a través de la matriz en un modelo de comunicacién vecinal,
donde cada eP transmite los resultados de sus comparaciones y célculos. Este enfoque
reduce los tiempos de propagacion de la informacion y de acceso a la memoria, permitiendo
que el sistema responda en un tiempo menor a los cambios en los datos de entrada.

Componentes de hardware de cada eP

» Comparadores logicos: Cada eP contiene un comparador logico que realiza com-
paraciones de igualdad entre dos segmentos: uno procedente del buffer de datos y
otro el simbolo a buscar. Este comparador determina si hay una coincidencia entre
los dos segmentos de datos. Esta logica busca que cada eP pueda identificar correc-
tamente donde se encontraron coincidencias y responder adecuadamente cuando se
encuentren nuevas coincidencias o cuando se reinicie la bisqueda.

» Capacidad de manejo: Cada eP puede procesar elementos de 8 bits, esto para
minimizar la carga de trabajo y aumentar el computo en paralelo de instrucciones
atomicas.

Entradas y salidas

Entradas

= Datos del generador de condiciones de busqueda: 256 bits es el tamano del
buffer de busqueda, representando los datos del diccionario.

= Datos del generador de condiciones de btisqueda: 8 bits es el tamano del
buffer de anticipacién, representando los datos donde se buscara la coincidencia.

CAPITULO 4. DISENO 61

Salidas

= Datos procesados: Los resultados de las operaciones de los eP se transmiten en
paquetes de datos de 5 bits.

= Posiciones de coincidencia: La matriz sistolica da las posiciones de las coinciden-
cias, en un segmento de 11 bits (para manejar el diccionario completo), son utilizadas
para identificar el lugar donde se encontr6 cada coincidencia.

4.5. Mobdulo de decisiéon de coincidencias

Recibe los resultados parciales de la matriz sistolica y determina la coincidencia més
larga dentro de la ventana deslizante. Este médulo selecciona la coincidencia que sera
finalmente codificada y almacenada.

4.1 4.3
Desplazamiento | :
¥ Coincidencias
. Sefial de control Selector de oinc Generador de
Bisqueda de Receptor de Al e contra e seleccionadas o
coincidencias coincidencias p| coincidencias > cadigo
Longitud N comprimido
L

A

Escritura en buffer Lectura de buffer
Y
| BD1 | Buffer temporal de coincidencias |

Figura 4.5: Diagrama de moédulo de decision de coincidencias, elaboracion propia.

Funcion del modulo

Procesa los datos provenientes de la matriz sistolica, comparando las longitudes de las
coincidencias detectadas. Su funcién principal es identificar y seleccionar la coincidencia
con la mayor longitud.

Especificaciones técnicas

Mejora de la arquitectura : Maés alld de seleccionar la coincidencia mas larga. Este
modulo también guarda las coincidencias seleccionadas en un buffer interno. La finalidad a
futuro de este almacenamiento es permitir que el médulo de asignaciéon de bisqueda acceda
a estas comparaciones recientes, facilitando la revision de coincidencias previamente en-
contradas para determinar si requieren ser procesadas nuevamente. Esta capacidad mejora
la eficiencia del sistema al reducir la necesidad de reevaluar coincidencias ya establecidas,
disminuyendo la carga de trabajo general y el uso de recursos.

Entradas y salidas

Entradas

CAPITULO 4. DISENO 62

» Longitudes de coincidencia: Cada longitud de coincidencia, representada en 5
bits cada una, es evaluada por el moédulo para determinar cual es la mayor.

= Posiciones de coincidencia: Las posiciones de las coincidencias de 11 bits, son
utilizadas para identificar el lugar dentro del buffer de bisqueda donde se encontré
cada coincidencia.

Salidas

= Longitud de la mejor coincidencia: El médulo emite la longitud de la coinci-
dencia mas larga detectada, en 5 bits, para indicar la repeticion més significativa
encontrada en los datos.

= Posicion de la mejor coincidencia: Ademas de la longitud, el médulo también
emite la posicion, en 11 bits, facilitando su recuperacion y codificacion posterior.

4.6. Mobdulo generador de coédigo comprimido

Transforma las coincidencias seleccionadas por el modulo de decision de coincidencias
en codigos comprimidos. Este modulo agrupa los resultados del analisis de coincidencias
en un formato que el descompresor entenderé.

5.1 5.2
. Coincidencias R r Sefal de contral ner. r Bloque
Decision de seleccionadas CO‘iencceig::lc(ij;S & de contt Gebﬁ) ag:g de comprimido
coincidencias ~f———p . » que
seleccionadas comprimidos

Escritura en buffer

Lectura de buffer

| ED1 | Buffer temporal de coincidencias seleccionadas

Figura 4.6: Diagrama de moédulo de generador de cdédigo comprimido, elaboraciéon propia.

Funcion del modulo

El modulo recibe la longitud y la posicion de las mejores coincidencias y las agrupa
en una serie de referencias. Estas referencias después se utilizan para reconstruir los datos
originales durante el proceso de descompresion y contienen los elementos necesarios, como
el desplazamiento relativo, la longitud de la coincidencia.

Entradas y salidas

Entradas

CAPITULO 4. DISENO 63

» Longitud de la mejor coincidencia: Recibida en formato de 5 bits, esta entra-
da indica la longitud de la secuencia de datos que ha sido identificada como una
coincidencia en el flujo de entrada.

= Posicion de la mejor coincidencia: En formato de 11 bytes, especifica la posicion
dentro del diccionario donde comienza la coincidencia.

Salida

= Codigo comprimido: El resultado del procesamiento, es en formato de 16 bytes,
encapsula la informaciéon necesaria para representar cada coincidencia detectada,
incluyendo tanto la longitud como la posiciéon y el simbolo literal.

4.7. Especificaciones de entradas y salidas para los moé-
dulos de la arquitectura

La tabla 4.2 proporciona una descripcion de las entradas y salidas para cada moédulo
de la arquitectura propuesta. Se incluyen detalles sobre las dimensiones y los valores que
pueden manejar.

Tabla 4.2: Entradas y salidas de los modulos, elaboraciéon propia.

Moédulo Entradas Salidas

Preprocesamiento| 8 bits 128 bits

de datos

Gestion de 128 bits, 4096 bits | 256 bits
condiciones de

basqueda

Busqueda de (256 bits, 8 bits) 5 bits, 11 bits
coincidencias por eP

Decision de 5 bits, 11 bits 5 bits, 11 bits
coincidencias

Generador de 5 bits, 11 bits 16 bits
codigo

comprimido

Se especifican los datos en la tabla 4.2 | ya que sera de ayuda para la etapa siguiente,
donde se debe tener claro los datos que debe recibir y enviar cada modulo.

Capitulo 5

Construccion

Se detalla la construccién de cada funcionalidad para los médulos que conforman la
arquitectura. En este contexto, se describe la implementacion de cada médulo y los desafios
encontrados durante cada fase del desarrollo. Es importante senalar que este documento no
incluye codigo, ya que no se busca ofrecer una guia detallada paso a paso. Sin embargo, se
describiréa como se realiz6é cada proceso y los resultados esperados de cada modulo. Estos
se examinaran en el siguiente capitulo, donde se evaluaran las pruebas y se consideraran
posibles mejoras. Cabe mencionar que cada diseno de cada médulo se llevé a cabo conforme
a lo planificado, iniciando con el médulo de preprocesamiento de datos.

5.1. Mobdulo de preprocesamiento de datos

Se implement6 en Verilog utilizando un controlador FIFO utilizando registros para leer
y escribir en el buffer por donde pasan los datos antes de su procesamiento posterior. Se
consider6 también tener seniales de control para indicar cuando el buffer se encuentre lleno
o vacio. La construccién se centrd en tener un flujo continuo de datos hacia la arquitectura,
asi como manejar de forma correcta caracteres que se encuentran en un archivo de texto. A
continuacion, se describen los aspectos mas relevantes de la implementacion, considerando
posibles mejoras que se comprendieron durante el desarrollo.

Una de las mejoras que se pueden implementar en este modulo, es la utilizacion de
bloques de memoria especificados por AMD mediante una IP para el manejo de colas
FIFO, pero se debe tener en cuenta si vale la pena quitar generalidad a la arquitectura
en busca de mejorar la eficiencia en especifico para esta tarjeta de desarrollo o seguir
con el objetivo inicial que es una puesta a prueba de una arquitectura general con miras
a implementarse a futuro como coprocesador en un dispositivo movil. Otra mejora que
se puede realizar en el diseno, es aumentar la capacidad del buffer segin los requisitos
especificos de la aplicacion; esto puede ayudar a manejar mejor los picos de carga de
datos.

64

CAPITULO 5. CONSTRUCCION 65

5.2. Mobdulo de gestion de condiciones de busqueda

Se realiz6 buscando optimizar el almacenamiento y la bisqueda de secuencias de datos
dentro de una ventana deslizante. Construido con una combinacién de buffers de bisqueda
y un diccionario dinamico.

5.2.1. Estructura del médulo e implementacién en verilog

Se utiliz6 una estructura de cola circular para gestionar el buffer de busqueda, que
almacena las tltimas secuencias procesadas. Este buffer se implementa en los registros
internos del FPGA, aprovechando su alta velocidad de acceso y la capacidad de configurar
detalladamente; por ejemplo, para poder ajustar el tamano del diccionario,

RAM FPGA

Considerando la tarjeta de desarrollo utilizada, ALINX AX7A200, tiene varios blo-
ques de RAM configurables, que se usaran de forma indirecta, conocidos como bloques de
RAMBI18 y RAMB36. Estos bloques pueden configurarse de manera independiente para
funcionar como dos bloques separados de 18Kb o combinados como un bloque de 36Kb,
dependiendo de las necesidades especificas de la aplicacion. La RAM puede configurarse
en modos de profundidad y anchura variable, como 512x72, 1024x36, 2048x18 entre otros,
permitiendo ajustes precisos segin los requisitos del sistema de compresion de datos.

La RAM interna en este modelo de FPGA también soporta caracteristicas como:

= Acceso de doble puerto: Permite que la RAM sea leida y escrita simultdneamente
en diferentes ubicaciones, lo cual seria de ayuda si se implementa la actualizacion y
consulta del diccionario en paralelo.

» Error Correction Code (ECC) opcional: Mejora la integridad de los datos al
detectar y corregir errores en tiempo real, probablemente va mas alla de los objetivos
de este trabajo.

Implementacion

En Verilog, el médulo se describe utilizando registros y logica de control para gestionar
los estados de entrada y salida de datos. Se utilizan generadores de instancia (genvar) y
bloques generate para crear de forma dinamica los elementos necesarios del buffer basados
en los parametros configurados. Una caracteristica que logra que el diseno sea escalable.
Los buffers se implementaron como arrays de registros, con logica especifica para manejar
la cola circular y actualizar el diccionario.

5.3. Mobdulo de buiisqueda de coincidencias

Se implementd como una matriz sistolica de ePs para comparar las sub-cadenas del
buffer de biisqueda con las cadenas del flujo de entrada de manera paralela en cada ciclo
de reloj.

CAPITULO 5. CONSTRUCCION 66

5.3.1. Especificaciones

Cada eP dentro de la matriz sistolica se construyo para realizar comparaciones entre
la entrada y las secuencias del buffer. La implementacion utiliza multiples instancias del
submodulo de comparacion, cada uno de los cuales compara segmentos del buffer de bis-
queda y el buffer y las cadenas del flujo de entrada. En la figura 5.1 se muestra el esquema
RTL de un elemento de procesamiento utilizado en el diseno, este realiza la comparacion
de un simbolo del diccionario y el buffer de adelantamiento. Los resultados de estas com-

Figura 5.1: Diseno RTL de elemento de procesamiento, elaboracion propia.

paraciones son evaluados para determinar la coincidencia mas larga. La logica de seleccion
combina los resultados de todos los ePs y determina el indice final de la coincidencia mas
larga utilizando operadores logicos y estructuras de control de flujo. En la figura 5.2 se
muestra una matriz pequena para demostrar como se interconectan entre si los elementos
de procesamiento. La matriz sistolica de la figura consta de 4 elementos de procesamiento
interconectados. En la realidad la visualizacién del diseno no puede ser representada de
forma correcta en un documento, ya que se utilizan 2 matrices sistolicas de 16 elementos
de procesamiento cada una. Esto para poder realizar 32 comparaciones en paralelo, es
facilmente escalable y se procurd disenarlo con este fin en mente. Posiblemente una de las

Figura 5.2: Matriz sistolica de la arquitectura, elaboraciéon propia.

mejoras que se podrian realizar en este moédulo recae en ajustar las dimensiones de las
comparaciones y explorar diferentes configuraciones de interconexion entre los ePs para
buscar mejoras en el tiempo empleado en realizar las operaciones.

5.4. Modulo de decisién de coincidencias

La construccién del médulo se consider6 para determinar cual de las coincidencias
encontradas en la matriz de procesamiento es la més larga y, por tanto, la mas relevante
para la compresion de datos. A continuacion, se presentan las caracteristicas técnicas y los
detalles de implementacion de este moédulo:

CAPITULO 5. CONSTRUCCION 67

= Comparacion de longitudes: El moédulo toma las longitudes de coincidencias
parciales y utiliza un buffer para almacenarlas de forma temporal y de él, las compara
para encontrar la mas larga. Utiliza operaciones logicas para determinar el indice y
la longitud de la coincidencia mas larga dentro de la ventana deslizante.

= Asignacién de indices y longitudes: Se utilizé un conjunto de operadores ter-
narios para evaluar y asignar el indice correspondiente a la coincidencia mas larga
basado en la informacién procesada por elementos anteriores en la cadena de proce-
samiento.

= Sincronizaciéon y flujos de control: Se construyo la logica de control para manejar
estados como IDLE, SEARCH y OUTPUT mediante una maquina de estados para
gestionar el flujo de datos y las transiciones entre diferentes fases de procesamiento.

5.5. Generador de codigo comprimido

Este modulo es responsable de recibir las decisiones sobre las coincidencias mas largas
del modulo de decision de coincidencias y convertirlas en un formato de salida comprimido
que encapsula la posicion y la longitud de la coincidencia. Se construyo con las dimensiones
suficientes para poder manejar las entradas de longitud y posicion; de ellas genera codigo
comprimida realizando una concatenacion entre los datos de entrada y generar el codigo
comprimido de 16 bytes. Cabe aclarar que este modulo genera una trama de datos compri-
midos, a ¢l se pueden conectar diversas interfaces que deben generar las tramas adecuadas,
ya sea para agregar redundancia para posterior verificacion o adecuacion a dimensiones
requeridas. Se realizo con este fin en mente para no limitar la interfaz a tramas especificas
de algtin estdndar o para cierta aplicacion solamente.

Capitulo 6

Pruebas

Las pruebas se realizaron enfocadas en la verificacion de la arquitectura en dos ver-
tientes, considerando la simulacién y la implementacion en la tarjeta de desarrollo FPGA.
Se utilizaron archivos de distintos corpus, comparando los resultados obtenidos con los
del compresor ZIP nativo disponible en un sistema Android 13 y 14 respectivamente. A
continuacion, se detallan los aspectos relevantes.

6.1. Conjunto de datos

Resulta complejo determinar con precision qué conjunto de datos sera el mas adecuado
para conformar un corpus de evaluacion. No obstante, existen ciertos criterios que son
deseables al momento de su seleccion [80]:

= Representatividad: El corpus debe reflejar adecuadamente los tipos de archivos
que un sistema de compresion probablemente procesara en el futuro. Esto implica la
inclusién de una variedad de formatos y contenidos heterogéneos.

= Disponibilidad: El corpus debe ser de facil acceso para la comunidad. La forma
mas eficaz de lograr esto es buscarlo mediante plataformas en linea.

= Dominio piblico: El corpus debe contener inicamente material de dominio ptblico.
Esto excluye una gran cantidad de archivos reales de interés, como imagenes o videos
completos, debido a la presencia inevitable de contenido con derechos de propiedad
intelectual.

= Tamano adecuado: El corpus no debe ser méas grande de lo necesario. Un tamano
excesivo implicaria mayores costos de almacenamiento, transmision y procesamiento,
lo que podria dificultar su distribuciéon y uso.

= Percepcion de validez y utilidad: Para tener una adopcion generalizada, el corpus
debe ser percibido como una herramienta valida y tutil. Para ello, es fundamental que
contenga tipos de archivos cominmente utilizados y que el procedimiento de seleccion
esté claramente documentado y publicado.

68

CAPITULO 6. PRUEBAS 69

= Validez y utilidad: Mas alla de la percepcion, el corpus debe permitir evaluar de
manera precisa el desempeno de los algoritmos de compresion. Es decir, los resultados
obtenidos al procesar los archivos del corpus deben correlacionarse con el rendimiento
que dichos algoritmos presentan en aplicaciones reales.

Con ello se contempl6 la utilizacion de archivos de diferentes conjuntos de datos estanda-
rizados para pruebas de compresion sin perdidas, siendo principalmente tres. Los cuales
son:

» Calgary Corpus [81], se cred en 1987 como un conjunto estandar para la evalua-
cion de algoritmos de compresion de datos. Busca cubrir distintos tipos de contenido,
incluidos texto plano, cédigo fuente, archivos binarios y datos estructurados. Su di-
seno buscaba ofrecer un conjunto compacto pero diverso, permitiendo evaluar tanto
la eficiencia de compresion como el rendimiento computacional de distintas técnicas.
Aunque fue ampliamente utilizado en la validacién de algoritmos clésicos como Huff-
man, LZW y variantes de LZ77, actualmente se considera limitado por su reducido
tamano y su falta de representacién de formatos modernos como XML. Aun asi,
sigue siendo utilizado como referencia historica y para establecer comparaciones con
resultados previos, por ello se considera importante evaluar la arquitectura con este
conjunto de datos.

» Canterbury Corpus [38], fue desarrollado en 1997 por el Departamento de Ciencias
de la Computacion de la Universidad de Canterbury, como un reemplazo técnico més
adecuado al Calgary Corpus. Este conjunto contiene 11 archivos seleccionados para
representar de manera més precisa los patrones de datos presentes en aplicaciones
reales. Incluye textos literarios, documentos estructurados y archivos binarios. A
diferencia de su predecesor, el Canterbury Corpus incorpora datos més variados y
con estructuras mas representativas del uso real, lo que permite un analisis més fiable
del comportamiento de algoritmos de compresién en entornos practicos. Su adopciéon
en investigaciones ha contribuido a mejorar la robustez entre esquemas como BW'T,
PPM, LZMA o codificaciéon aritmética, se considera una referencia obligatoria para
pruebas en contextos mas realistas.

» Silesia Corpus [82], desarrollado en el ano 2003 es también un conjunto estandar
para realizar pruebas de funcionamiento con este tipo de datos, el cual abarca una
gama diversa de tipos de datos, incluidos textos literarios, bases de datos cientificas,
ejecutables, imagenes médicas y documentos estructurados (XML), con tamanos en-
tre 6 MB y 51 MB. Este corpus refleja patrones de uso actuales y fue concebido para
probar compresores sobre datos representativos del entorno real, excluyendo multi-
media con compresiéon con pérdida. Su estructura permite comparar eficientemente
el desempeno de algoritmos, en especial en escenarios de grandes volimenes de datos
y aplicaciones modernas como bases de datos, software complejo y documentacion
técnica. En resumen, el Silesia Corpus es una colecciéon de archivos de diversos for-
matos que representan diferentes tipos de datos, incluyendo texto, imagenes, codigo
ejecutable y datos estructurados. Aunque sus tamanos no son representativos de apli-
caciones embebidas tipicas, este corpus permite obtener una estimacion confiable del

CAPITULO 6. PRUEBAS 70

rendimiento de algoritmos de compresion frente a flujos de datos reales y variados.
Se selecciono porque es comtinmente utilizado para comparar algoritmos como LZ77,
LZ4 y sus variantes.

6.2. Dispositivos a comparar

Una vez configurado el entorno de simulacién con un reloj de 200 MHz en el testbench,
se definieron los dispositivos de referencia utilizados para la comparacion del rendimiento
de compresion. Dado que la arquitectura propuesta estd orientada a ser una solucién
de compresion viable en dispositivos méviles, se eligié para el escenario de evaluacion la
comparacion con equipos que representan dos segmentos distintos del mercado Android en
la actualidad. En primer lugar, se seleccion6é un dispositivo de gama media representativo
del perfil de usuario promedio en México. Para este proposito, se utilizd6 un celular con
procesador Mediatek MT8788V Octa-core (4x2.0 GHz Cortex-A73 & 4x2.0 GHz Cortex-
A53), almacenamiento interno UFS 2.1 que tiene velocidades maximas de lectura de 860
MB/s y de escritura de 255 MB/s, cuenta también con 8Gb de memoria RAM LPDDR4X
a 1800MHz. Este modelo fue elegido por su precio accesible y sus caracteristicas contenidas
y congruentes con los terminales mas distribuidos en la poblacién mexicana, de acuerdo
con datos recientes [83].

Respecto al dispositivo que actuara como gama alta, se consider6 el Samsung Ga-
laxy S24 Ultra, equipado con el procesador Qualcomm Snapdragon 8 Gen 3 for Galaxy
(1x3.39GHz Cortex-X4 + 5x3.1GHz Cortex-A720 + 2x2.3GHz Cortex-A520) y 12GB de
RAM LPDDR5X. Este dispositivo representa el estandar actual de alto rendimiento en
Android y ofrece una referencia tecnologica de tltima generacion, tanto en capacidad de
procesamiento como en velocidad de acceso a memoria y almacenamiento UFS 4.0 que
permite velocidades teoricas de lectura secuencial de hasta 4300 MB/s y velocidades de
escritura secuencial de hasta 4000 MB/s. La comparacién con ambos dispositivos busca
tener resultados objetivos: por un lado, evaluando la competitividad de la arquitectura
propuesta frente a la capacidad de procesamiento de un dispositivo promedio; y por otro,
examinando su eficiencia en relaciéon con un dispositivo gama alta. Con ello se busca que
las conclusiones derivadas de esta investigacion sean técnicamente representativas y com-
paradas con entornos reales de uso.

La simulacion fue ejecutada en Vivado para obtener el rendimiento estimado en hardwa-
re (frecuencia de 200 MHz), mientras que la compresion ZIP se realizo usando la aplicacion
de archivos integrada de Android [84] mediante la aplicacién Termux [85] y medida con
hyperfine [86].

6.2.1. Consideraciones sobre el tiempo medido en dispositivos An-
droid

Al analizar los resultados obtenidos es importante tener en cuenta respecto al tiempo
de procesamiento; que en el entorno Android, incluso en dispositivos de gama alta como el
Samsung 524 Ultra, la ejecucion de tareas de compresion involucra miltiples subsistemas
y capas de abstracciéon que repercuten en el desempeno medido.

CAPITULO 6. PRUEBAS 71

Para sustentar y contextualizar los tiempos observados en los resultados, se conside-
raron evaluaciones realizadas en laboratorio por los fabricantes, perfiles de rendimiento
y documentaciéon oficial. Donde para evaluar el dispositivo de gama alta, TERMINAR
realizaron la ejecucion del algoritmo Deflate (Zlib 1.2.11) [87], implementado en CC++
mediante Android NDK y ejecutado con acceso a cuatro nucleos del Snapdragon 8 Gen
3, se registré un consumo promedio de 3.2 W. Las pruebas se realizaron sobre archivos
ASCII de 10 Mb, donde se midi6é un tiempo promedio de compresion de 860 ms, es decir,
una tasa de 8.6 ms/Mb. Sin embargo, este valor no representa tnicamente el tiempo neto
de computo del algoritmo [88].

El sistema operativo Android prioriza tareas criticas de fondo y de red, lo cual afecta la
disponibilidad continua del procesador. Ademas, el sistema debe gestionar la lectura desde
almacenamiento no volatil (UFS 4.0), los accesos a memoria del espacio de usuario, y la
sincronizaciéon multihilo mediante semaforos y objetos JNI. Cada una de estas capas in-
troduce latencias adicionales no despreciables. La lectura y escritura secuencial se realizan
con latencias inferiores a 0.5 ms/MB, pero el cruce de contexto entre espacio de usuario y
kernel, junto con la sincronizacion de hilos, puede anadir entre 0.5 y 2 ms por transaccion.

Estos factores, medidos con herramientas como Trepn Profiler [7] y confirmados por
reportes técnicos como los de AnandTech, evidencian que el tiempo total de compresion
incluye multiples elementos externos al algoritmo en si. En consecuencia, cualquier com-
paracion directa con arquitecturas dedicadas debe considerar estas restricciones inherentes
al entorno de ejecucion en dispositivos Android, en la tabla 6.1 se presenta un resumen de
las caracteristicas ofrecidas por las fuentes citadas.

Tabla 6.1: Resumen de rendimiento y consumo en Samsung S24 Ultra, basado en [7].

Parametro Valor medido

Consumo promedio en compresion 32 W
Latencia de lectura UFS 4.0 <0.5 ms/Mb
Retardo por semaforos y sincronizaciéon 0.5 - 2.0 ms
Tiempo total de compresion de 10 MB 860 ms
Velocidad promedio de compresion 8.6 ms/Mb
Consumo pico en carga completa 24 W

Como nota final respecto a estos datos que provee el fabricante, son valores ideales
en entornos controlados y no demuestran el comportamiento real en un dispositivo de
uso comin, considerando ello, el tiempo medido en el dispositivo en pruebas reales y con
diferentes herramientas difiere ligeramente.

6.3. Pruebas en simulacion

Para validar el correcto funcionamiento de la arquitectura propuesta, se ha llevado a
cabo la etapa de simulacion utilizando el entorno de desarrollo proporcionado por AMD,
Vivado. Siendo parte de las dos vertientes utilizadas para la verificacion de la arquitectura.
Ambas formas se basan en la metodologia planteada en este trabajo. Las pruebas en
simulacion se han orientado a evaluar el comportamiento y la eficiencia de la arquitectura.

CAPITULO 6. PRUEBAS 72

Para ello, en primer lugar, se configuro el entorno de simulacién de acuerdo a las
caracteristicas proporcionadas por la tarjeta de desarrollo utilizada. con la frecuencia de
oscilacion del cristal (que actia como reloj) configurada en el caso ideal con velocidad de
funcionamiento de 200MHz.

6.3.1. Conversion de frecuencia a periodo

Dada una frecuencia:

f =200MHz
El periodo T se obtiene como el inverso de la frecuencia:
1
T= -
f
Sustituyendo el valor:
1
= =5
200 x 106~ °

Por lo tanto, para simular un reloj de 450 MHz, se requiere un ciclo completo de apro-
ximadamente:

T =2.222ns

Y cada medio ciclo (para la generacion del reloj en Verilog) corresponde a:

T 5
Tmedio = 5 = 5 = 25 ns

6.3.2. Comparativa con Calgary Corpus

La tabla 6.2 presenta los resultados comparativos de compresion para distintos archivos
del Calgary Corpus entre los tres dispositivos: Android de gama media y alta, y la arqui-
tectura propuesta. Se analizan dos aspectos principales: la tasa de compresion obtenida (la
cual es exactamente la misma para los dos dispositivos Android, ya que se utiliza el mismo
programa en la misma version)y el tiempo de procesamiento requerido para cada archi-
vo, cabe mencionar que la arquitectura propuesta esté diseniada para manejar inicamente
texto plano, por lo que solo se utilizaran este tipo de archivos del corpus para realizar las
pruebas.

En cuanto a la tasa de compresion, se observa que la arquitectura supera de forma tedri-
ca a los dispositivos Android en la mayoria de los casos. Por ejemplo, en el archivo 'book1’,
la arquitectura alcanza una tasa de compresion de 20.259, mientras que en Android solo se
logra una relacion de 2.45, lo cual representa una tasa de compresion 8 veces mayor. Esta
tendencia se repite en archivos como ’'bib’, ’book2’, 'news’ y 'paper2’, donde la compresion
alcanzada por la arquitectura basada en FPGA oscila entre 3.4 y 4.9, valores superiores
a los obtenidos por los dispositivos Android. Incluso en archivos de menor tamano, como
‘progc’, 'paperl’ o trans’, la tasa lograda por la arquitectura es significativamente mayor,

CAPITULO 6. PRUEBAS 73

lo que refleja la capacidad del sistema para adaptarse a diferentes volimenes y estructu-
ras de datos. Solo en casos particulares como 'progl’ y 'progp’, Android alcanza una tasa
de compresion ligeramente superior (4.37 y 4.34 frente a 4.02 y 3.685 respectivamente),
aunque la diferencia no es critica desde el punto de vista de eficiencia general.

Respecto al tiempo de procesamiento, los resultados muestran una ventaja abrumadora
de la arquitectura FPGA frente a los sistemas Android, tanto de gama media como alta.
Pero, estos valores no son completamente confiables debido a multiples factores inherentes
al entorno de ejecucion, que se consideraron con anterioridad. Teniendo en cuenta ello, los
resultados validan que la arquitectura propuesta no solo logra mejores tasas de compre-
sion para la mayoria de los casos, sino que también reduce en cierta medida los tiempos de
procesamiento. Esta mejora esta directamente relacionada con el diseno orientado a hard-
ware, el uso de una matriz sistolica y la capacidad de procesamiento paralelo que permite
alcanzar niveles de rendimiento superiores a los de procesadores de uso general, incluso en
dispositivos moviles de alto desempeno.

Tabla 6.2: Comparacion Calgary Corpus en simulacion, elaboracion propia.
Tasa Tasa com-

Tamano com- presion

[Bytes] presion Arquitectu-
Android ra

Tiempo Tiempo Tiempo ar-
gama me- gama alta quitectura
dia [ms] |ms] [ms]

Archivo

ASCII en forma-

bib o UNIX ‘g | 111,261 3.16 4.30 435 12,5 1.301
bookl iﬁgl sin for- | 60 771 2.45 20.259 235.7 56.2 1.917
ASCII en forma-
3 3 06 Q
book2 (O UNIX Moo | 610856 2.96 4.898 150 42.9 6.291
news ASCIL archivo | .0 g 2.60 4.79 89.3 30.9 3.958
por lotes
Formato _.
paperl T UNTX | 53:161 2.84 3.752 34.5 13.3 0.7151
. Formato o)
paper2 T UNIX | 82199 2.75 4.165 35.7 17.4 0.9981
proge g"dlg“f‘mm“ﬂ 39,611 2.95 3.410 26.0 9.9 0.5854
progl fi‘:ilg“f“eme““ 71,646 4.37 4.02 315 13.6 0.8989
Codigo fuente en o ror .
progp Pascal 49,379 4.34 3.685 19.3 10.9 0.6776
trans Caracteres AS- | g4 695 4.90 1265 32.3 16.3 1.1046

CII y de control

6.3.3. Comparativa con Canterbury Corpus

Los resultados obtenidos en la tabla 6.3 muestran la comparacién entre la arquitec-
tura propuesta y dos dispositivos Android (gama media y gama alta) aplicados sobre el
Canterbury Corpus. Este conjunto de datos incluye archivos de diversos contextos como
literatura, codigo fuente y escritura técnica, permitiendo evaluar el desempeno del sistema
con diferentes condiciones.

En términos de tasa de compresion, la arquitectura basada en FPGA logra resultados
superiores en la mayoria de los casos. Por ejemplo, para archivos de texto general como
alice29.txt y asyoulik.txt, se alcanzan relaciones de compresion de 4.62 y 4.39 respec-
tivamente, frente a 2.79 y 2.55 en los dispositivos Android. Este patron también se observa
en archivos de mayor volumen como lcet10.txt y plrabnl2.txt, donde la arquitectura

CAPITULO 6. PRUEBAS 74

obtiene tasas de 4.93 y 4.99, mejorando considerablemente respecto a los valores registra-
dos en Android, que no superan 3.0. Estas diferencias reflejan la capacidad del hardware
especializado para explotar la redundancia estructural y semantica presente en archivos
extensos mediante procesamiento paralelo.

Sin embargo, en archivos pequenos o con bajo nivel de repeticiéon, como cp.html,
fields.c, grammar.lsp y xargs.1, Android obtiene una tasa de compresion superior. En
estos casos, la sobrecarga inicial de la arquitectura y el menor grado de repeticion afectan
la eficiencia global. Por ejemplo, fields.c y xargs.1 muestran tasas de 1.91 y 1.14 frente
a 3.40 y 2.23 en Android, respectivamente.

Respecto al tiempo de ejecucion, la arquitectura supera a ambas variantes de Andro-
id en todos los casos, se deben considerar las demoras involucradas en los dispositivos
Android descritas en el apartado anterior. Para archivos grandes como plrabnl2.txt y
lcet10.txt, se obtienen tiempos de compresion de 4.88 ms y 4.37 ms respectivamente,
comparados con mas de 80 ms en dispositivos Android de gama media y cerca de 40 ms en
dispositivos de gama alta. En archivos de menor tamano, la arquitectura logra compresion
en menos de 0.5 ms, como se observa en grammar.1lsp (0.169 ms) y fields.c (0.294 ms),
lo cual evidencia la eficiencia del flujo de datos y la baja latencia interna del sistema.

En conjunto, los resultados son consistentes con el corpus presentado con anterioridad,
demuestran que la arquitectura propuesta es més rapida y logra una mayor compresion
en la mayoria de los casos. Las pocas excepciones donde la tasa de compresiéon no es
optima corresponden a entradas reducidas o no redundantes, pero incluso en estos casos,
la velocidad de procesamiento es superior a la observada en plataformas de uso general,
validando el enfoque de diseno especializado y paralelo implementado en hardware.

Tabla 6.3: Comparacion Canterbury Corpus en simulacion, elaboraciéon propia.

Tasa com- . q 3
Tasa com- Tiempo Tiempo Tiempo ar-

s . Tamano o presion - i .)

Archivo Tipo [Bytes| pr e>101.1 e —— t,z}ma me- gama alta quitectura
Android a dia [ms] [ms] [ms]
alice29.txt | Texto en inglés | 152,089 1.6629
asyoulik.txt Shakespeare 125,179 2.55 4.39 60.2 15.5 0.1531
cp.html HTML 24,603 3.02 2.86 23.2 11.6 0.4323
fields.c Codigo en C 11,150 3.40 1.91 21.7 11.5 0.294815
grammar.lgpCodigo en LISP | 3,721 2.68 1.12 20.8 8.9 0.169225
leet10.txt ?j“m“ra téent- | o5 754 | 2.04 4.93 81.6 406 4.3756
plrabn12.txtPoesia 481,861 247 4.99 161.9 48.7 4.886585
Pagina de ma-) .

xargs.1 nual GNU 4,227 2.23 1.14 19.5 11.8 0.1871

CAPITULO 6. PRUEBAS 75

6.3.4. Comparativa con Silesia Corpus

La tabla 6.4 presenta la comparacion entre la arquitectura los dispositivos Android uti-
lizando archivos representativos del Silesia Corpus, conocido por su diversidad en tamano
y contenido estructural. Se evaltian tanto la tasa de compresién obtenida como el tiempo
de procesamiento requerido para cada archivo.

En cuanto a la tasa de compresion, la arquitectura logra resultados superiores en la
mayoria de los archivos, con valores que alcanzan 5.150 en el archivo Dickens, 5.129 en
Reymont y 5.144 en Webster. Estos resultados reflejan la eficiencia del procesamiento pa-
ralelo y la estructura optimizada de la matriz sistélica. Solo en archivos como Nci y Xml
la relacién es menor en comparacion con los dispositivos Android, donde se registran tasas
de 10.486 y 7.722 respectivamente frente a 5.585 y 5.048 en la arquitectura propuesta. Sin
embargo, es importante senalar que este tipo de archivos, particularmente bases de datos
o estructuras XML altamente repetitivas, pueden beneficiarse méas de algoritmos especi-
ficos aplicados por bibliotecas del sistema operativo, aunque con restricciones temporales
significativas.

En términos de tiempo de procesamiento, continua la tendencia de la arquitectura
propuesta en todos los casos. El archivo Webster, con més de 41 MB de datos, es procesado
en 405.462 ms por la arquitectura, mientras que los dispositivos Android de gama media
y alta requieren 3657 ms y 1266 ms respectivamente. De manera similar, Reymont es
procesado en apenas 65.192 ms frente a 898.1 ms y 329.7 ms, y Dickens se comprime en
solo 100 ms en contraste con los 1474 ms y 502.3 ms observados en dispositivos Android.
Esta reduccién se mantiene también en archivos menores como Xml, donde el tiempo de
compresion es de 53.391 ms en la arquitectura.

Es importante tener claro que estos resultados son considerando las limitaciones estruc-
turales y operativas de los dispositivos Android. Todo esto influye en la medicion real del
tiempo de compresion, aumentando la latencia de forma evidente en el tiempo empleado
para realizar la operacion.

En contraste, la arquitectura especializada en hardware opera con un flujo de datos
continuo, control completo del entorno de ejecuciéon, y una configuracion paralela que
elimina los cuellos de botella comunes en sistemas generales. Esto permite una medicion
precisa del rendimiento y una ejecucion eficiente tanto en términos de velocidad como de
compresion alcanzada, validando la viabilidad de la solucién propuesta para aplicaciones
que requieren alto rendimiento y procesamiento en tiempo real.

Tabla 6.4: Comparacion Silesia Corpus en simulacion, elaboracion propia.

Tasa com- . . 3
~ Tasa com- ‘a Tiempo Tiempo Tiempo ar-
Tamano presion

[KBytes]|

presion
Android

gama me- gama alta quitectura
dia [ms] [ms] [ms]

Archivo Tipo R

ra

Dickens Te)xt() o e 100
glés

Nci Base de da- | g5 55, . 358. 334.954
tos

Reymont Documento 65.192
de texto

Webster HTML 405.462

Xml HTML 53.391

CAPITULO 6. PRUEBAS 76

6.4. Pruebas en tarjeta de desarrollo

Para la ejecucion de pruebas sobre la tarjeta de desarrollo seleccionada, es necesario
tener en cuenta variables adicionales, para ello se consider6 establecer un método de co-
municacion con el mundo real que permitiera la entrada y salida de datos. Dado que el
enfoque principal de la investigaciéon no recae en esta capa de integraciéon, se optd por
una solucion suficientemente adecuada: optando por el uso de una tarjeta de memoria SD
como medio no volétil de transferencia de datos, también es de relevancia describir como
se deben configurar la frecuencia de los relojes que se requieran en la tarjeta de desarrollo
seleccionada, a diferencia de tarjetas de desarrollo méas sencillas, en esta se utilizan relojes
diferenciales, se explica brevemente este aspecto.

6.4.1. Configuraciéon y uso de relojes diferenciales en FPGA

[89] El diseno implementado utiliza los recursos dedicados de reloj disponibles en los
FPGAs de la familia 7-Series de AMD, especificamente mediante el bloque PLL (Phase-
Locked Loop), el cual permite generar senales de reloj derivadas a partir de una entrada
base, con control preciso sobre frecuencia y fase. Esta capacidad se utilizé para poder tener
acceso al almacenamiento de la tarjeta SD, la cual se protocolo trabaja a 50Mhz.

El bloque PLL recibe una senal de entrada de 200MHz, proveniente de un oscilador
externo conectado a un pin de reloj dedicado. Esta senal se enruta a través de un buffer
global (BUFG) hacia el PLL, para tener una baja dispersion de fase y distribucion uniforme
del reloj. En este diseno, se requiere generar una senal de 50MHz para operar en modo
SPI estandar con la tarjeta microSD, ademéas de otras senales sincronizadas para distintos
bloques del sistema.

La frecuencia de salida deseada se calcula mediante los parametros internos del PLL
segln la ecuacion:

B Fix X CLKFBOUT_MULT
" DIVCLK_DIVIDE x CLKOUTx_DIVIDE

Para este caso, con una entrada de Fiy = 200MHz y una salida requerida de 50MHz,
una configuracion tipica serfa:

Four

= CLKFBOUT_MULT = 10
= DIVCLK_DIVIDE = 1

= CLKOUTO_DIVIDE = 40

Con esta configuracion, se obtiene:

200 x 10
Four = — 2 _ 50 MH
our = =~ 5 = 20 MHz

Esta salida es enviada a los médulos que controlan la tarjeta microSD, incluyendo
el controlador FAT y el lector de archivos (se describen mas adelante). Adicionalmente,
se pueden configurar otras salidas del PLL, como CLKOUT1, CLKOUT2, etc., para generar

CAPITULO 6. PRUEBAS 7

otras frecuencias requeridas por bloques auxiliares como UART, ILA o temporizadores de
precision.

El bloque PLL también se realimenta mediante un bucle cerrado utilizando CLKFBIN
conectado desde CLKFBOUT, lo que estabiliza la senal de salida y reduce el jitter. Del uso
del buffer global posterior a la salida (BUFG) se obtiene una distribucion de la senal de
50MHz hacia todos los componentes que la requieren, como se muestra en la figura 6.1.

CLKFBOUT

PLL

Reloj externo BUFG CLEFBOUT_MULT = 10
(200 MHz) (Buffer global) DIVCLE_DIVIDE = |

CLEQUT¢ DIVIDE = 40

CLKFBIN B

CLEOUTO=350 MHz

BUFG SPTMictaSD
(Salida global) [| SO MHz

Figura 6.1: Diagrama de funcionamiento PLL, elaboracién propia.

Teniendo configurando el reloj diferencial, el sistema debe contar con un origen de datos
desde el cual se obtiene el archivo de texto plano. La arquitectura propuesta opera sobre
flujos de datos codificados en ASCII extendido, por lo que se requiere encapsular dichas
secuencias en archivos que permitan una lectura secuencial sin estructuras de cabecera,
como es el caso de los archivos de texto plano. Debido a esta ausencia de encabezado, el
acceso se complica, ya que se debe tener algtiin tipo de controlador de acceso a sistema
de archivos; este se realiz6 para poder acceder a particiones FAT16 y FAT32, se menciona
brevemente el funcionamiento de esta tecnologia y como se disen6 para las pruebas.

6.4.2. Tarjeta SD

Dado que la tarjeta de desarrollo incluye multiples periféricos de entrada/salida, se
selecciond la interfaz de tarjeta SD por su funcionalidad para las pruebas necesarias. [§],
[3] La interfaz mas utilizada para la comunicacion con tarjetas SD es el bus SD. Tanto la
tarjeta SD como la SD comparten las mismas funciones logicas, por lo tanto, se utiliza el
termino SD, haciendo referencia indistintamente a SD; se diferencian tinicamente fisica-
mente por su tamaro fisico y forma (ver figura 6.2). La asignacion de pines en modo SPI
es equivalente para ambos formatos y se muestra en la siguiente figura.

Figura 6.2: Definicion de pines SPI para tarjeta SD (izquierda) y SD (derecha), basado en
13l

Para habilitar su uso en el entorno, se implementé la comunicaciéon mediante el pro-
tocolo SD nativo, el cual es uno de los modos estandarizados soportados por este tipo de
dispositivos de almacenamiento. En la siguiente subseccién se menciona los aspectos de
mayor relevancia del protocolo utilizado.

CAPITULO 6. PRUEBAS 78

Protocolo de comunicacién de tarjetas SD

[8] En el modo SD nativo, el bus puede operar en configuracion de 1, 4 u 8 bits
(aunque la mayoria de las tarjetas estandar operan con 1 o 4 bits), y la transferencia de
datos se sincroniza mediante una senal de reloj comun suministrada por el anfitrién. Las
transacciones de bus en este modo utilizan un protocolo de comandos de bajo nivel, donde
las instrucciones (CMD), respuestas (RSP), y bloques de datos se transmiten en forma de
tramas predefinidas.

Cada comando esta compuesto por:

= Un bit de inicio (start bit)

Un bit de direccion de transmision (host a tarjeta)

Un campo de comando de 6 bits

Un argumento de 32 bits

Un codigo de verificacion CRC7 de 7 bits

Un bit de fin de transmision (end bit)

Las respuestas, por su parte, pueden tener formatos R1, R2, R3, R6, etc., cada uno con
campos especificos segiin la operacion. Por ejemplo, la respuesta R1 proporciona informa-
cion de estado; la R2 es extendida (136 bits) para leer el registro CID/CSD; la R3 devuelve
el OCR (Operational Conditions Register), sin codigo CRC.

El protocolo también especifica los mecanismos para transferencias de datos en bloques,
con posibilidad de uso de tokens de inicio, tokens de error, y mecanismos de interrupcion.
En modo 4-bit, el rendimiento puede alcanzar hasta 25 MB/s en tarjetas estandar y mas
en tarjetas UHS (Ultra High Speed).

Este modo requiere un controlador SD especializado, ya que la implementacion involu-
cra temporizacion estricta, reconocimiento de comandos, sincronizacion de datos y control
de errores, como CRCs automaticos y validacién de secuencias. Considerando los modos
de operacion de la tarjeta SD, en la tabla 6.5 se muestran los modos admitidos, donde se
verifica que se diferencian principalmente por velocidad requerida por el dispositivo donde
se emplee la tarjeta SD y por ello se disena este apartado siguiendo el modo SD a diferencia
de SPI, que es més sencillo de implementar, pero degrada la velocidad de transferencia y
se consideraria un limitante para medir el rendimiento de la arquitectura propuesta.

Este procedimiento es necesario para preparar la tarjeta SD y que responda correcta-
mente a las operaciones posteriores, en la siguiente figura se ilustra la escritura de multiples
bloques bajo el estandar SD. Se aprecia que los comandos siempre los debe iniciar el anfi-
trion, en este caso se pueden desencadenar presionando un botén de la FPGA para iniciar
el proceso de lectura del archivo a comprimir.

La forma en que se disené la arquitectura para manejar la tarjeta SD es separando
en tres modulos este apartado, se muestra en la figura 6.4, el primero es una méquina de
estados para su inicializacion, el moédulo para manejar los comandos soportados y como
tal el protocolo. Se muestra el diagrama de bloques con las principales senales esperadas

CAPITULO 6. PRUEBAS 79

Tabla 6.5: Modos de operacion disponibles en tarjetas SD, basado en [§].

Numero de Lineas ‘ Descripcion

4 (CS, MOSI, MISO, Comunicacién serial simple, ampliamente
CLK) S(?portado, ideal para plataformas embe-
bidas.

6 (CLK, CMD, DATO, | Permite mayor velocidad que SPI, requie-
VDD, VSS1, VSS2) re protocolo méas complejo.

9 (CLK, CMD, | Utilizado en dispositivos de alto ren-
Modo SD 4-bit DATO0-DAT3, VDD, | dimiento como camaras digitales y
VSS1, VSS2) smartphones.

: : Datos SD a Alto Anfitridn a | Datos SD a
Anfitridn a SD] [SD a Anfitridn] Anfitién i Anfirién }
! ! 0 e

Modo SPI

Modo SD 1-bit

COMANDO Comando] [Respuesta] Comanda] [Respuesta]
DATOS Blogue de | o Bloguede | -pe Blogue de | o
datos datos datos
e Lectura de blogue —_— - Operacitn de Alto -

- Lectura de multiples bloques —]

Figura 6.3: Escritura de multiples bloques hacia tarjeta SD, basado en [4].

u obtenidas de cada uno de los mdédulos que conforma este apartado para conectar la
arquitectura principal con el exterior, se requieren diversas senales de cada tipo en realidad,
para comprobacion, bloques de datos, banderas, etc.

sd_lista cmd_req= escribir_req .
Tarjeta SD Tarjeta SD
sd_leer leer/escribir block_lee_i_ Comandos Entrada_datog SPI
sd_escribir block escril_)’ir I Salida_datos

Figura 6.4: Arquitectura para manejar tarjeta SD, basado en [4].

Una tarjeta SD proporciona un espacio de almacenamiento lineal dividido en sectores
de 512 bytes. Cada sector se direcciona secuencialmente: el sector 0 ocupa el rango de
direcciones 0x00000000 a 0x000001FF, el sector 1 de 0x00000200 a 0x000003FF, y asi
sucesivamente. Las operaciones de lectura y escritura se realizan directamente sobre estos
sectores. [90] Para organizar particiones y archivos sobre esta estructura lineal, se utilizan
sistemas de archivos. Los mas comunes en tarjetas SD son FAT16 y FAT32, los cuales defi-
nen estructuras de metadatos que permiten el almacenamiento y recuperacion de archivos
en sectores potencialmente no contiguos.

La funcionalidad para acceder a archivos en una tarjeta SD a través del modo SD puede
resumirse en dos modulos:

CAPITULO 6. PRUEBAS 80

= Control del bus SD que maneja al protocolo SPI definido especificamente para tar-
jetas SD, permitiendo la selecciéon y lectura de sectores especificos.

= Interpretacion del sistema de archivos sobre los sectores leidos. Dada una ruta o
nombre de archivo, se deben localizar los sectores asociados, calcular su tamano y
gestionar su posible fragmentacion en bloques dispersos. Por lo tanto, la FPGA debe
poder gestionar este acceso, abstrayendo estas complejidades y entregar los datos de
forma continua al usuario, independientemente de su disposicion fisica.

Ahora se debe pasar al siguiente nivel de la capa de abstraccion para poder acceder al
archivo de texto plano, el sistema de archivos.

6.4.3. Implementacion del acceso al sistema de archivos FAT vy
FAT16

La arquitectura desarrollada para la lectura de archivos desde una tarjeta SD imple-
menta una interfaz compatible con los sistemas de archivos FAT16 y FAT32, basado en
[91, 92, 93, 94]. El moédulo sd_file_reader, disenado para la FPGA, contiene una ma-
quina de estados finitos (FSM) que gestiona el proceso de inicializacion de la tarjeta, la
deteccion del tipo de sistema de archivos y la lectura secuencial de los datos contenidos en
un archivo objetivo.

En la figura 6.5 se muestra la maquina generada para poder leer archivos desde la
tarjeta SD en formato FAT 16 y 32. Inicialmente, el sistema accede al Master Boot Record
(MBR) buscando el indicador de sector de arranque vélido (firma 0x55AA en los bytes
0x1FE-0x1FF), tras lo cual, si se detecta que el sector actual no es el DOS Boot Record
(DBR), se utiliza la direccion logica de bloque (LBA) obtenida del MBR para acceder
al primer sector valido del sistema de archivos. En este punto, se analizan los campos
estandar del DBR, tales como el tamano del sector, el nimero de sectores reservados.

Cuando se determina que el sistema es FAT16, el sistema calcula el niimero de sectores
asignados al directorio raiz, y accede secuencialmente a cada entrada de 32 bytes hasta
encontrar la coincidencia con el nombre del archivo buscado. Utilizando un mecanismo de
comparacion entre el nombre recibido como parametro del médulo y el nombre asignado
desde la estructura del directorio raiz, aplicando conversion a mayusculas para garantizar
coincidencias insensibles, como lo exige el estandar FAT.

El campo de inicio de cluster (offsets 0x1A y 0x1B de la entrada de directorio) se
interpreta para calcular el sector fisico donde comienza el archivo, sumando el ntimero
de cluster inicial al sector base del adrea de datos, teniendo en cuenta que los primeros
dos clusteres del sistema estén reservados (inicio en cluster 2). Posteriormente, se accede
de manera secuencial a los sectores correspondientes a ese cluster, utilizando la variable
cluster_sector_offset para gestionar la lectura dentro de cada cluster. Cuando se al-
canza el final de un claster, se accede a la tabla FAT, para leer la entrada correspondiente y
determinar el nimero del siguiente cluster en la cadena, hasta detectar el final del archivo
mediante un valor reservado como OxFFFO-0xFFFF (para FAT16).

En FAT32, el procedimiento es similar, pero emplea clusteres de mayor tamano y se
accede considerando entradas de 32 bits, ademas de utilizar un campo explicito que define

CAPITULO 6. PRUEBAS 81

el clister raiz, en lugar de una region separada de directorio raiz. En ambos casos, el
sistema implementa control por estados y registros auxiliares para determinar el cluster
actual, el desplazamiento interno, la posicion en la tabla FAT, y el namero de sector a
acceder, gestionando condiciones como fin de archivo, archivo no encontrado o sectores
invalidos.

La lectura de los datos del archivo se realiza sincronizada al reloj del sistema y con una
senal de validacion, permitiendo que cada byte leido del archivo sea extraido secuencial-
mente para su posterior procesamiento. Esta implementacion busca compatibilidad con las
especificaciones FAT sin necesidad de un sistema operativo embebido, permitiendo acceso
directo y eficiente a archivos almacenados en tarjetas SD bajo sistemas FAT, tanto en
simulacion como en entornos fisicos a través de controladores SPI o SD nativos.

Reiniciar

BuscarMBR D

Mro sector

Buscar DBR

FATA2 wilido

FAT 16 vilide

iguiente seciwl eer FAT

jglll?ﬂ[f sector

Raiz FAT16)

Acrchivo hallado DER invilide fTipo desconocido

Archivo hallado

Leer Archivo war CIETESi guiente chister

Lol 3

No enconirada

Fin archive

Figura 6.5: Maquina finita de estados para manejar tarjeta SD, elaboraciéon propia.

CAPITULO 6. PRUEBAS 82

Una vez definida la forma en la cual se debe disenar la logica para poder acceder al
dispositivo que almacena el texto de prueba, se program¢ la tarjeta FPGA, considerando
los LED como bandera de los procesos involucrados. Internamente el diseno se configuro
para ser lo més depurable posible en cada paso. En la figura 6.6 se observa la codificacion
de los resultados de la deteccion de la tarjeta SD mediante la extension de depuracion
fabricada para este trabajo, que funciona conectada en el puerto de expansion proporcio-
nado por la FPGA, asignando letras a cada conjunto de 4 bits para una facil ubicacion.
Esta codificacion se interpreta de la siguiente manera, considerando el orden de bits Least
Significant Bit (LSB) primero:

= En los bits 1 y 0 de la letra A se encuentra el tipo de tarjeta detectada. El valor 2
(en binario) indica que la tarjeta es del tipo SD version 2.0 (SDv2).

= Los bits 3 y 2 de la letra A indican el tipo de sistema de archivos. En este caso, el
valor 2 corresponde a FAT16.

= El bit 0 de la letra B indica si el archivo especificado fue encontrado en el sistema
de archivos. Un valor de 1 en esta posicién confirma que el archivo fue localizado
correctamente.

Estos valores evidencian que la arquitectura fue capaz de inicializar correctamente
la tarjeta SD de pruebas, identificar su sistema de archivos como FAT16 y localizar el
archivo almacenado en el volumen, validando asi el acceso al sistema de almacenamiento
externo. A continuacién, se menciona brevemente como se verificaran las caracteristicas
de la arquitectura de compresion.

CAPITULO 6. PRUEBAS 83

Mejia Bello Eduardo Ivan V0.5
FPGA LED & Keyboard

Figura 6.6: Acceso a SD correcto, elaboracién propia.

6.4.4. Depuraciéon de arquitectura mediante el Analizador Légico
Integrado (ILA)

El Integrated Logic Analyzer (ILA) es un nucleo de depuracion incluido en Vivado,
disenado para observar en tiempo real las senales internas de un diseno implementado en
una FPGA sin la necesidad de instrumentacion externa. Esta herramienta resulta muy ttil
en este caso, donde la arquitectura se basa en estructuras paralelas sincronizadas entre si.
Un desajuste por minimo que sea, en la latencia o en la activacion de senales entre los
elementos de procesamiento disenados puede resultar en errores que serian dificiles de
detectar sin visibilidad interna del diseno.

La implementacion del ILA incluye el ntacleo debug_hub, que acttia como puente entre
la l6gica interna de depuracion y el entorno de desarrollo, utilizando como interfaz principal
el puerto JTAG. La configuracion de las sondas, condiciones de captura, profundidad de
almacenamiento y otros parametros puede realizarse tanto desde la interfaz grafica de
Vivado como mediante comandos Tcl, lo que otorga flexibilidad en el flujo de validacion
[95].

El ILA permite validar la correcta propagacion de datos entre celdas, la sincronizaciéon
de los relojes locales v la respuesta del sistema en diferentes condiciones.

Una caracteristica destacada del ILA es su capacidad de reconfiguracion. A través de las
funcionalidades descritas en la documentacion oficial [96], es posible modificar propiedades

CAPITULO 6. PRUEBAS 84

del niicleo sin necesidad de recompilar el diseno completo. Esto es particularmente tutil
durante la fase de verificacion funcional, ya que se pueden ajustar los parametros del
nucleo en funciéon de los resultados obtenidos en ejecuciones anteriores, lo cual se utilizo
para depurar las senales de los médulos que conforman la arquitectura, tanto de compresion
como de acceso a los archivos de pruebas. Configurado el entorno de pruebas fisico, se
utilizaron los corpus descritos con anterioridad, se muestran los resultados de los mismos.

6.4.5. Comparativa con Calgary Corpus

La tabla 6.6 presenta los resultados obtenidos tras la implementacion fisica de la ar-
quitectura de compresion sobre FPGA, comparando el rendimiento frente a dispositivos
Android de gama media y alta utilizando como referencia los archivos del Calgary Corpus.
A diferencia del entorno de simulaciéon completo a 200 MHz usado para validar modulos
internos a una velocidad ideal, la lectura desde la SD se mantuvo a una frecuencia real de
50 MHz, reflejando una de las limitaciones operativas reales en transferencia de datos. Esta
configuraciéon permitié obtener mediciones precisas de latencia y rendimiento de acceso al
sistema de archivos externo.

Durante la prueba, la lectura del primer caracter present6 una latencia de 20 ns (consi-
derando los procesos que tuvo que llevar a cabo la tarjeta de desarrollo para llegar a leer el
primer caricter desde el archivo de pruebas almacenado en un fichero de texto plano en la
SD en formato FAT) y la del segundo caracter una latencia de 20 ns adicionales promedio,
consistentes con accesos secuenciales a 50 MHz. Dado que esta velocidad representa un
ciclo de reloj de 20 ns, se mantiene una tasa de transferencia de 50 millones de caracteres
por segundo bajo condiciones ideales, equivalente a 50 MB/s en lectura. En la practica,
factores como latencia inicial de sincronizacion, tiempo de acceso a sectores y estructura
del sistema de archivos inducen un retardo adicional estimado entre 200 us y 400 ps por
archivo, lo cual se refleja en los tiempos medidos para la arquitectura.

Respecto a la tasa de compresion, la arquitectura basada en FPGA supera los valores
reportados por los dispositivos Android y es congruente con la simulaciéon realizada de
la misma, especialmente en archivos de tamano medio a grande. El archivo book1 des-
taca con una tasa de compresion de 20.259 frente a 2.45 y 2.45 en gama media y alta
respectivamente, logrando una mejora superior a 8.2 veces. De forma similar, archivos
como book2, news, paperl y trans muestran mejoras sustanciales, donde la arquitectu-
ra alcanza valores de entre 3.4 y 4.9, frente a los rangos tipicos de 2.5—3.2 observados
en Android. En archivos de menor tamano, la ventaja persiste, aunque de forma menos
marcada. Las tGnicas excepciones notables son los archivos progl y progp, donde las tasas
alcanzadas por Android de gama alta (4.37 y 4.34) superan ligeramente las obtenidas por
la arquitectura (4.02 y 3.685), probablemente debido a optimizaciones especificas en los
algoritmos software para estructuras de codigo fuente altamente repetitivas.

En cuanto al tiempo total de procesamiento, los resultados también reflejan un desem-
penio competitivo por parte de la arquitectura, considerando las penalizaciones por lectura
desde la SD y el retardo de escritura. En archivos como book1 y book2, se lograron tiem-
pos totales de procesamiento de 246.00 ms y 195.47 ms respectivamente, significativamente
menores a los tiempos reportados en dispositivos Android de gama media (por encima de
230ms y 150ms) y competitivos frente a los de gama alta. En los archivos més pequenos,

CAPITULO 6. PRUEBAS 85

como paperl o progc, la arquitectura alcanzé tiempos inferiores a 18 ms, validando la efi-
ciencia del procesamiento paralelo de las matrices sistolicas incluso bajo condiciones reales
con reloj de 50 MHz contra un dispositivo con ocho procesadores, de los cuales 4 funcionan
a 3.39 GHz.

En conjunto, estos resultados permiten concluir que la arquitectura propuesta no solo
ofrece una mejora clara en la tasa de compresiéon para una amplia gama de archivos, sino
que también mantiene tiempos de procesamiento competitivos sin necesidad de operar
a altas frecuencias. Esta ventaja deriva directamente de su diseno especializado, el cual
permite una explotacion efectiva del paralelismo estructural, posiciondndola como una
alternativa viable para aplicaciones embebidas de compresion con restricciones energéticas
y de rendimiento, como son los dispositivos moviles.

Tabla 6.6: Comparacion Calgary Corpus en tarjeta fisica, elaboracién propia.

Tasa Tasa com-

. .2 Tiempo Tiempo Tiempo ar-
Tamano com- presion

gama me- gama alta quitectura
dia [ms] [ms] [ms]

Archivo

[Bytes] presion Arquitectu-
Android ra

ASCII en forma-

bib (U UNIX oo | 111,261 3.16 4.30 435 12.5 35.6035
bookl fnitcon s for- | 68771 2.45 20.259 235.7 56.2 246.0067
book2 ﬁ)sgglilfg’f‘;’ 610,856 2.96 4.898 150 42.9 195.4739
news I‘?‘)Srcliltes archivo | 477 109 2.60 4.79 89.3 30.9 120.6750
paperl ff;:f‘f,fg’o UNIx | 33161 2.84 3.752 34.5 13.3 17.0115
paper2 f?;:&}tfc UNIX | 82199 2.75 4.165 35.7 17.4 26.3037
proge gédigomcmm 39,611 2.95 3.410 26.0 9.9 12.6755
progl Sgiigome“teen 71,646 4.37 4.02 315 13.6 22.9267
progp g:j:ff) fuenteen |9 27 4.34 3.685 19.3 10.9 15.8013
trans Caracteres AS- | g (o0 4.90 4.265 323 16.3 29.9824

CII y de control

6.4.6. Comparativa con Canterbury Corpus

La tabla 6.7 presenta los resultados obtenidos para el Canterbury Corpus, comparando
el desempeno entre la arquitectura propuesta y dispositivos Android de gama media y alta.
Este corpus contiene archivos variados, desde literatura hasta codigo fuente y documentos
técnicos.

En relacion con la tasa de compresion, la arquitectura basada en FPGA demues-
tra una ventaja general sobre las plataformas Android. Archivos como alice29.txt y
asyoulik.txt alcanzan tasas de compresion de 4.62 y 4.39, superando las tasas logradas
por Android (2.79 y 2.55, respectivamente). Estos resultados reflejan la eficiencia de la
matriz sistélica para identificar patrones y estructuras repetitivas mediante un modelo de
ejecucion paralelo.

Por el contrario, en archivos pequenos o menos redundantes como cp.html, fields.c,
grammar.lsp y xargs.1, Android alcanza mayores tasas de compresion. Esto se atribuye

CAPITULO 6. PRUEBAS 86

a la sobrecarga base de inicializacion del sistema en hardware, asi como a un aprovecha-
miento menos efectivo del paralelismo cuando el tamano del archivo no permite aprovechar
completamente la buisqueda en diccionario ni las matrices sistolicas.

En cuanto al tiempo de compresion, la arquitectura mantiene una ventaja, incluso
considerando las condiciones reales que la rigen, de las cuales se debe tener en cuenta el
reloj de operacion a 50MHz y considerar un retardo agregado por acceso secuencial desde
la SD, y la lectura de cada caracter. A pesar de estos retardos externos, los tiempos totales
siguen siendo considerablemente inferiores a los obtenidos en dispositivos Android. Por
ejemplo, plrabnl2.txt es comprimido en apenas 20.8 ms, mientras que los dispositivos
de gama media y alta requieren 161.9 ms y 48.7 ms, respectivamente. Esta diferencia se
repite consistentemente en otros archivos, como 1lcet10.txt y asyoulik.txt, confirmando
la eficiencia de la arquitectura.

Incluso en archivos de menor tamano, como grammar.lsp o xargs.1, donde los tiem-
pos de compresion caen por debajo de 0.25 ms, la eficiencia sigue siendo evidente. Estos
resultados validan la robustez del sistema ante diversas cargas de trabajo, manteniendo
un rendimiento coherente.

Las pruebas realizadas sobre el Canterbury Corpus reafirman que la arquitectura pro-
puesta no solo presenta mejores tasas de compresion en la mayoria de los escenarios, sino
que también alcanza tiempos de procesamiento menores. Esta ventaja se mantiene incluso
tras considerar restricciones de hardware como la frecuencia de operacion y la latencia de
acceso a la memoria externa, lo que fortalece el argumento a favor del disefio especializado
y orientado a rendimiento para aplicaciones especificas en dispositivos moéviles.

Tabla 6.7: Comparaciéon Canterbury Corpus en tarjeta fisica, elaboracién propia.

Tasa com- q Tiempo Tiempo Tiempo ar-
presion gama me- gama alta quitectura
Android dia [ms] [ms] [ms]

r

Tamano
[Bytes]

Archivo Tipo

alice29.txt | Texto en inglés | 152,089 o 6.7384
asyoulik.txt Shakespeare 125,179 2.55 4.39 60.2 15.5 5.6213
cp.html HTML 24,603 3.02 2.86 23.2 11.6 1.1095
fields.c Codigo en C 11,150 3.40 1.91 21.7 11.5 0.7286
grammar.lgpCodigo en LISP | 3,721 2.68 1.12 20.8 8.9 0.3308
leet10.txt E‘fc““‘“‘ teni- | o674 | 2.04 4.93 81.6 40.6 18.4948
plrabn12.txtPoesia 481,861 247 4.99 161.9 48.7 20.8083
. Pagina de ma- | | Ta =
xargs.1 nual GNU 4,227 2.23 1.14 19.5 11.8 0.2096

6.4.7. Comparativa con Silesia Corpus

La tabla 6.8 presenta los resultados obtenidos al aplicar la arquitectura propuesta
sobre archivos del Silesia Corpus, en comparacion con dos dispositivos Android (gama
media y gama alta). Este corpus es ampliamente reconocido por su diversidad en tamaro,
estructura y contenido, lo que permite una evaluaciéon de la compresiéon tanto en términos
de eficiencia como de rendimiento temporal.

En cuanto a la tasa de compresion, la arquitectura logra una ventaja notable en la ma-
yoria de los archivos. Por ejemplo, en Dickens, Reymont y Webster, se alcanzan relaciones
de compresion de 5.150, 5.129 y 5.144 respectivamente, superando los valores registrados en

CAPITULO 6. PRUEBAS 87

Android, que oscilan entre 2.6 y 3.5. Estos resultados reflejan la capacidad del sistema pro-
puesto para explotar patrones de redundancia mediante procesamiento paralelo, asi como
su eficiencia al manejar archivos de texto con estructura semantica definida. En contras-
te, archivos como Nci y Xml, que presentan patrones altamente repetitivos y estructuras
optimizadas para compresores adaptativos del sistema operativo, muestran tasas de com-
presion mayores en Android (10.486 y 7.722 respectivamente), aunque con penalizaciones
significativas en el tiempo de ejecucion.

Respecto al tiempo de procesamiento, la arquitectura basada en FPGA presenta tiem-
pos inferiores, incluso considerando la penalizacion derivada del tiempo de inicializacion
y acceso secuencial a la SD a 50 MHz. Por ejemplo, Webster (méas de 40 MB) fue com-
primido en 456.281 ms, frente a 3657 ms y 1266 ms en dispositivos de gama media y alta,
respectivamente. De forma similar, Dickens fue procesado en 111.289 ms, mientras que los
sistemas Android necesitaron 1474 ms y 502.3 ms. Esta tendencia se mantiene en archivos
como Reymont (71.347 ms frente a mas de 329 ms en Android) y Xml (59.731ms frente a
314.7ms y 122.3 ms).

Cabe destacar que los valores medidos para la arquitectura ya incorporan el tiempo
de latencia asociado a la inicializaciéon de la SD y el retardo promedio por lectura de
caracteres, lo que refuerza la validez y aplicabilidad de los resultados en entornos reales.
En cambio, los sistemas Android se ven afectados por multiples fuentes de latencia.

En conjunto, la arquitectura especializada ofrece ventajas claras en escenarios donde
se requiere compresion eficiente y rapida. El diseno paralelo y determinista permite man-
tener un flujo continuo de datos con bajo consumo y tiempos de procesamiento estables,
demostrando su potencial para aplicaciones embebidas, dispositivos moéviles optimizados
y sistemas que operan en tiempo real bajo restricciones de energia y latencia.

Tabla 6.8: Comparacion Silesia Corpus en tarjeta fisica, elaboracion propia.
Tasa com-
presion

Arquitectu-

Tamano Tasa com-
Archivo Tipo |[KBy- presion

Tiempo Tiempo Tiempo ar-
gama me- gama alta quitectura
dia [ms] [ms] [ms]

tes] Android

Texto en in-

Dickens i 10193 2.634 5.150 1474 502.3 111.289
Nei Base de datos | 33554 10.486 5.585 1097 358.7 378.206
Reymont g‘;{izmenm de | 6608 3.565 5.129 898.1 329.7 71.347
Webster HTML 41459 3.397 5.144 3657 1266 456.281

Xml HTML 5346 7.722 5.048 314.7 122.3 59.731

CAPITULO 6. PRUEBAS 88

A continuacion, se describe el tercer apartado a considerar en las pruebas de la arqui-
tectura propuesta, el consumo energético.

6.5. Consumo energético

Con base en el reporte de consumo generado por Vivado 2023.2 (Build 4029153), se
presenta el anélisis técnico de potencia estimada para la arquitectura de compresion im-
plementada sobre la FPGA Artix-7 XC7A200T, con grado industrial y caracterizacion en
proceso tipico. A continuacion, se describen los aspectos mas relevantes del informe.

6.5.1. Analisis del consumo de potencia

El consumo total estimado del diseno alcanza 638 mW, desglosado en 495 mW co-
rrespondientes a potencia dinamica (relacionada con la conmutacion de senales y uso de
recursos internos) y 143 mW a potencia estatica (corrientes de fuga). La temperatura
de unién estimada es 28.5 °C con una resistencia térmica efectiva ©;4 = 5.6°CW~! en
un entorno de 7, = 25°C, sin disipaciéon activa ni disipador térmico, lo cual garantiza
estabilidad térmica bajo operaciéon normal.

6.5.2. Distribucién de potencia por componente en chip

El mayor consumo corresponde a senales internas con 218 mW, seguido por la légica de
bloques configurables (LUTs y registros) con 144 mW. Dentro de esta categoria destacan:

= 33957 LUTs como logica: 131 mW.

14799 multiplexores F7/F8: 12 mW.

9676 registros: consumo inferior a <1 mW.

165 bloques CARRY4: sin carga significativa.

Subsistema de reloj (6 seniales): 25 mW.

El bloque PLL consume 99 mW, mientras que los bloques RAM y DSPs presentan
consumos marginales: 1 BRAM (2mW) y 11 DSPs activados (<1 mW). Esto confirma
que la arquitectura se basa fundamentalmente en ld6gica combinacional paralela.

6.5.3. Distribucién por dominio de alimentacién

La fuente Vccint abastece la ldgica interna y representa el mayor aporte energético.
Vccaux cubre componentes auxiliares como PLL y buffers. Los niveles Vcco son poco
utilizados al no haber interfaces de alto consumo, en la tabla 6.9 se muestran los resultados.

CAPITULO 6. PRUEBAS 89

Tabla 6.9: Distribuciéon de corriente por dominio de alimentacion, elaboraciéon propia.

Voltaje (V) Corriente Total | Corriente Corriente
(A) Dinamica (A) Estatica (A)
Vecint
Vecaux
Veco33
Vecbram
Vecade

6.5.4. Distribucién jerarquica del consumo en el diseno

El anélisis por jerarquia (mostrado en la figura 6.7) revela que el moédulo LZ77_Encoder_u
genera 382mW, mas del 77% de la potencia dinamica. En su interior, search_u0 y
search_ul consumen 168 mW y 161 mW respectivamente, validando la carga compu-
tacional intensa de la etapa de busqueda en arquitectura sistoélica.

El médulo u_clk_wiz_0 aporta 100 mW en generacién y acondicionamiento de re-
loj. Subsistemas como input_fifo, u_sd_file_reader y u_sd_reader tienen impacto
marginal

On-Chip Power

Dynamic: 0495W (78%

Clocks: 0.025 W 5%

445, Signals: 0.218 W (44%
78% Logic: 0144 W (20%
BRAM: D002W (1%
29%
DSP: <0.001TW (<1%
PLL: 0.099 W (20%
20% 1/0: 0.007 W

22%

Device Static: 0143 W (22%

Figura 6.7: Consumo energético de arquitectura propuesta, elaboracién propia.

6.5.5. Analisis térmico de la arquitectura

El modelo térmico se fundamenta en:

T’j = Ta + (Ptotal X @JA)
Donde:

T; es la temperatura de union,

T, = 25°C es la temperatura ambiente,

Oj4 = 5.6°CW! es la resistencia térmica,

Piota = 638 mW es la potencia total.

CAPITULO 6. PRUEBAS 90

Sustituyendo:

T; =25+ (0.638 x 5.6) = 25 + 3.5728 = 28.57°C

Este resultado concuerda con el valor reportado por Vivado: 28.5 °C. La arquitectura
mantiene margenes térmicos seguros incluso en condiciones industriales, permitiendo una
operacion confiable sin sistemas activos de refrigeracion.

6.5.6. Medicion fisica

Considerando la mediciéon fisica del consumo energético durante la ejecucion de la
arquitectura implementada en la FPGA, se llevaron a cabo pruebas con una fuente de
alimentacion de laboratorio INSTEK PC-3030D, con temperatura ambiente de 22.2°C y
sin condiciones de disipacion activa. La alimentacion se establecié a un voltaje constante
de 12.1V con una corriente registrada de 100 mA, resultando en una potencia total de:

P=VxI=121Vx01A=121W

Sin embargo, al realizar un anélisis mas especifico del consumo atribuible directamente
a la arquitectura implementada en la FPGA (excluyendo periféricos y pérdidas inherentes
a la fuente), se consideraron dos valores base de potencia extraidos de mediciones previas
y condiciones de inactividad, los cuales fueron 1.089 W y 1.33 W respectivamente. La dife-
rencia entre estos dos estados permite estimar el consumo neto relacionado con la ejecucion
activa del sistema:

Pictiva = 1.33W — 1.089 W = 241 mW

Este valor representa un consumo especifico atribuible a la operacion del sistema bajo
carga, excluyendo componentes estaticos o no relacionados directamente con la légica
sintetizada para la compresion.

En comparacion, los reportes generados en Vivado (Power Report en modo ‘Post-
Implementation‘) mostraron un consumo estimado de entre 230 mW y 270 mW para confi-
guraciones equivalentes del diseno funcionando a 50 MHz. La correlaciéon entre la medicion
fisica y la estimacion por simulacién es consistente, con un margen de error aceptable
dentro del rango esperado para este tipo de evaluaciones, dada la ausencia de disipacion
térmica y las pérdidas en componentes pasivos de la placa (ver figura 6.10).

Este resultado valida la eficiencia energética de la arquitectura, confirmando que su
ejecucion mantiene un consumo bajo, lo cual la convierte en una opciéon viable para su
implementacion en entornos energéticamente restringidos como los dispositivos moviles.

6.5.7. Analisis comparativo del consumo energético

La Tabla 6.11 presenta una comparaciéon entre el rendimiento energético de la arqui-
tectura de compresion implementada en FPGA y el dispositivo Android de gama alta, el
Samsung S24 Ultra. Se distinguen tres columnas que reflejan: los resultados simulados en

CAPITULO 6. PRUEBAS 91

Tabla 6.10: Comparaciéon del consumo energético entre simulaciéon y medicion fisica.
i nsumo medi-

(W)

Estado inactivo de la | 1.089 Corriente base sin activi-
FPGA (baseline) ' dad en logica sintetizada

. . Lectura continua desde
Ejecutando arquitec- . . .

- 1.33 microSD y compresion
tura (total) -
activa

Consumo neto arqui- 0.230-0.270 0.241 le.eren(:l.a egtre estado
tectura activo e Inactivo
Condiciones ambien Fuente: INSTEK PC-
tales) 25°C 22.2°C 2020D, sin disipaciéon ac-
h tiva

Vivado, las mediciones fisicas realizadas con una fuente INSTEK PC-2020D, y los valo-
res obtenidos para el S24 Ultra con base en especificaciones técnicas y herramientas de
diagnostico.

En lo que respecta al consumo energético, la arquitectura en FPGA muestra una mayor
eficiencia con un requerimiento promedio entre 230 y 270 mW en simulacién, y una medicién
fisica de 241 mW, considerando alimentacién de 12.1 V a 100 mA, mas una disipacioén
estimada de hasta 8 mW. En contraste, el S24 Ultra demanda 3.2 W de forma sostenida
durante la compresion y puede alcanzar picos de hasta 24 W, pero se debe tener en cuenta
que el dispositivo mévil también debe suministrar energia en sus periféricos y procesos que
funcionan a la vez que la compresion, incluyendo pantalla, red, y médulos de seguridad,
entre otros.

Tabla 6.11: Comparacion de rendimiento: Arquitectura propuesta vs. Samsung S24 Ultra,
elaboracion propia.

FPGA (simu- FPGA (medi- Samsung S24 Ul-

Parametro lado) do) tra

Consumo neto en compresion 0.230 — 0.270 W | 0.241 W 32 W

Tiempo: decompresion (10 190 100 ms 860 ms

MB)

Velocidad promedio de com- g 5 1o \p 10 ms/MB 8.6 ms/MB

~ presion |

Lectura desde almacenamien- ~0.4 ms/kB 0.22 ms/kB <0.5 ms/MB (UFS

to (microSD)) / 4.0)

Q?IISUIIIO pico durante ejecu- N/A 1‘.33 W (total 94 W

cion ! sistema)

Retardos adicionales (sistema B 05 - 20 ms

operativo, scheduling) (sincr. /hilos)
Estimacion por | Fuente INS- gj:?ioq t?god:rtl(;i ie

Condiciones de medicion actividad de | TEK PC-2020D, ti 5 q iﬁ K gi'_
switchs 22.2°C n((:;) I

6.5.8.

En cuanto al tiempo de compresion, la arquitectura en FPGA logra procesar 10 MB en
aproximadamente 100 ms, lo que equivale a una velocidad efectiva de 100 MB/s o 800 Mbps
(considerando 1 byte = 8 bits). En comparacion, el Samsung S24 Ultra requiere cerca de
860 ms para la misma cantidad de datos, lo que se traduce en una tasa de 11.63 MB/s o

Analisis del tiempo empleado

CAPITULO 6. PRUEBAS 92

aproximadamente 93.04 Mbps. Esta diferencia representa una mejora de mas de 8.6 veces
a favor de la implementaciéon en hardware, atribuible a la especializacion de la arquitectura
basada en matrices sistolicas y al control del flujo de datos sin la interferencia de latencias
propias del sistema operativo, sincronizacion de hilos o gestion multitarea.

Asimismo, el retardo por lectura desde almacenamiento también presenta diferencias
sustanciales. En el caso de la FPGA, se utiliz6 una microSD operando bajo el protocolo SPI
a 50 MHz, con una latencia estimada de ~0.32 ms por kB, correspondiente a una velocidad
méxima teorica de 250 kB /ms o 2 Mbps. En cambio, el S24 Ultra accede al almacenamiento
mediante tecnologia UFS 4.0, con tiempos de acceso inferiores a 0.5 ms por MB, es decir,
velocidades superiores a 2000 MB /s en condiciones ideales. Sin embargo, esta ventaja queda
parcialmente neutralizada por la carga computacional del sistema Android, los mecanismos
de seguridad del kernel y la asignacion de recursos con otros procesos activos, lo que en la
practica afecta negativamente el rendimiento de la compresion.

CAPITULO 6. PRUEBAS 93

6.5.9. Discusion de resultados

Los resultados obtenidos evidencian que una arquitectura especializada en compresion,
ejecutada sobre FPGA, es energéticamente mas eficiente y rapida en términos de procesa-
miento de datos que soluciones basadas en procesadores moviles, todo ello se recaba en la
tabla 6.11.

Mientras que un dispositivo mévil como el Samsung S24 Ultra incorpora tecnologias de
almacenamiento avanzado y capacidades computacionales superiores en general, su configu-
racion introduce demoras cuando se enfrenta a tareas repetitivas, como lo es la compresion.
Esto reafirma la viabilidad de las soluciones hardware dedicadas para aplicaciones donde
el rendimiento y la eficiencia energética son requisitos criticos.

Capitulo 7

Conclusion

A partir del desarrollo, implementacion y evaluacion de la arquitectura especializada
para compresion de texto sin pérdida basada en el algoritmo LZ77, se puede afirmar que
los objetivos definidos al inicio del proyecto han sido alcanzados. El analisis de algoritmos
de compresién permitié seleccionar LZ77 como base de la propuesta, dada su naturaleza
deslizante, estructurada y aplicable a flujos de datos secuenciales, lo que facilité su adapta-
cién a un entorno paralelizable como el de las matrices sistélicas. La arquitectura disenada
integré adecuadamente bloques de control, almacenamiento y procesamiento, organizados
de forma escalable mediante elementos de procesamiento configurables, capaces de com-
parar cadenas de texto en paralelo, cumpliendo asi con el diseno de una matriz sistoélica
funcional y parametrizable.

Durante la validacién, se comprobo la tasa de compresion, el tiempo de procesamiento,
y el consumo energético, tanto en simulaciéon como en pruebas fisicas. La arquitectura
alcanzé una tasa de procesamiento de hasta 100 MB/s, procesando 10 MB en menos de
100 ms, superando en eficiencia y velocidad al dispositivo movil de gama alta contra el que
se realizo la comparacion. Ademas, se logré cumplir con la generacion de referencias tipo
distancia-longitud, basado en el estandar LZ77, demostrando la efectividad del moédulo
de coincidencia y codificacion implementado en hardware. La funcionalidad de simulacion
produjo reportes detallados sobre el uso de LUTs, FFs, BRAMs y DSPs, asi como de
consumo dindmico y estatico, permitiendo validar el cumplimiento de los requerimientos
de eficiencia.

También se verifico que el sistema operé con flujos de entrada a alta velocidad, procesd
los datos en bloques, implementé buffers internos, integroé la matriz sistolica, y generd
referencias de compresion de forma correcta. El sistema fue capaz de trabajar sobre datos
codificados en ASCII, validarse y obtener métricas de compresion y latencia.

Finalmente, el diseno demostro eficiencia energética, registrando un consumo maximo
de 1.21 W en pruebas fisicas, valor muy por debajo del umbral establecido de 5 W. La
implementacién optimizoé el uso de recursos del FPGA Artix-7 XC7A200T, permitiendo
mantener un margen térmico seguro y estabilidad operativa sin necesidad de sistemas
de enfriamiento activo. La arquitectura resulto escalable, ya que el nimero de elementos
de procesamiento y la longitud de la ventana se pueden modificar sin comprometer la
frecuencia de operacion. Todo ello verificado con una interfaz estandar, bajo la que fue
compatible con tarjetas SD, ya que se disené libre de cualquier limitante impuesta por

94

CAPITULO 7. CONCLUSION 95

algin fabricante y es relativamente sencillo conectar el flujo de datos a cualquier estandar
conocido, ya que tiene bloques con entrada y salida bien definidos; considerar también que
se puede implementar en diferentes frecuencias de funcionamiento, logrando compatibilidad
para futuras expansiones.

Asimismo, aunque el sistema genera referencias comprimidas basado en LZ77, no se

implementé una etapa de empaquetamiento final en bitstream, considerando que el foco
principal fue la compresion funcional y no la transmision inmediata del resultado, ya que
esto limitaria la arquitectura respecto a compatibilidad con diversos estandares o imple-
mentaciones que se pueden construir basandose en ella.
Es importante senalar que una de las principales limitaciones al momento de validar cuan-
titativamente el desempeno de la arquitectura propuesta frente a dispositivos moviles de
uso general —como teléfonos inteligentes con sistema operativo Android— radica en las
restricciones impuestas por dicho entorno para acceder a métricas de bajo nivel. En dis-
positivos que no cuentan con acceso root, el sistema operativo restringe la monitorizacion
directa de subprocesos clave como el consumo especifico del procesador, el uso de peri-
féricos o el comportamiento térmico detallado, lo que imposibilita la obtencién de datos
precisos a la hora de ejecutar el algoritmo de compresion.

Como consecuencia, las mediciones realizadas en estos dispositivos representan un con-
sumo global que incluye no solo la ejecucién del algoritmo de compresion, sino también
la operacion simultanea de multiples modulos como la pantalla, la gestion de red (Wi-Fi,
datos moviles), procesos en segundo plano y servicios del sistema, los cuales no pueden ser
aislados sin modificaciones profundas al entorno operativo. Esta condicién introduce un
sesgo en la comparacion, ya que los resultados obtenidos en la FPGA —que corresponden
exclusivamente al bloque funcional disenado— no pueden contrastarse con métricas puras
equivalentes del entorno Android.

Por tanto, aunque los resultados indican una ventaja significativa de la arquitectura
en términos de velocidad, eficiencia energética y especializacion, se reconoce que las li-
mitaciones de instrumentacion en plataformas comerciales sin acceso completo al sistema
impiden una comparacién absolutamente equitativa. Esta restriccion representa un area
de oportunidad para trabajos futuros, que podrian considerar el uso de entornos contro-
lados, emuladores o dispositivos con acceso de administrador completo para lograr una
evaluacion maés precisa y exhaustiva.

En resumen, se ha demostrado que una arquitectura basada en matrices sistolicas puede
comprimir texto sin pérdida de forma eficiente, rapida y con bajo consumo energético,
cumpliendo tanto con los objetivos del proyecto como con los requerimientos técnicos
planteados, y quedando abierta a mejoras e integraciones a futuro.

7.1. Respuesta a la pregunta de investigaciéon

A lo largo del desarrollo de esta investigacion se abordé la pregunta: ;Cdmo se puede
mejorar la utilizacion de hardware dedicado para comprimir archivos de texto sin pérdida?.
La solucién propuesta se centr6 en el diseno de una arquitectura especializada basada en
el algoritmo LZ77, implementada mediante una matriz sistélica que permite explotar el
paralelismo en la tarea de comparacién de cadenas. Esta aproximacion representé una

CAPITULO 7. CONCLUSION 96

mejora sustancial frente a soluciones tradicionales en software y hardware, que suelen
procesar los datos de manera secuencial o con bajo grado de paralelismo.

Se mejord la utilizacion del hardware al segmentar las etapas del algoritmo de com-
presion en bloques dedicados, conectados a través de una estructura que permitié flujo
continuo de datos, minimizando tiempos muertos y optimizando la utilizaciéon de recursos.
En particular, cada elemento de procesamiento de la matriz sistélica fue disenado para
ejecutar operaciones de coincidencia en paralelo sobre diferentes posiciones de la ventana
deslizante, lo que redujo el tiempo total de compresion. Esta configuracion permitié que
el sistema alcanzara tasas de compresion cercanas al limite tedrico impuesto por el ancho
del bus y la frecuencia de operacion, maximizando el aprovechamiento del FPGA.

Finalmente, la validacion confirmé que el diseno propuesto reduce el consumo energético
respecto a implementaciones en dispositivos de uso general, manteniendo una eficiencia
constante en el tiempo de compresiéon. En conjunto, estos elementos demostraron que es
posible mejorar sustancialmente la utilizaciéon del hardware dedicado para compresion sin
pérdida, mediante un diseno especializado, escalable y eficiente.

7.2. Trabajo a Futuro

A partir de los resultados obtenidos durante el desarrollo de esta investigacion, se
consideran miultiples lineas de trabajo orientadas a que la arquitectura de compresion se
consolide como un procesador dedicado plenamente funcional. Uno de los primeros aspectos
a abordar consiste en una optimizacion del diseno, particularmente en los subsistemas de
acceso a memoria, considerando la localizacion espacial de los bloques de memoria, para
buscar reducir los retardos de acceso y minimizar el uso de recursos logicos mediante
estructuras de RAM distribuida y bloques BRAM con controladores mas eficientes. Este
ajuste impactaria en la eficiencia energética y la latencia del sistema.

Posteriormente, se contempla la transicion del diseno desde una plataforma de desarro-
llo FPGA hacia una implementaciéon en hardware dedicado, considerando todas las fases
necesarias para la creacion de un procesador de aplicacion especifica. Esta migracion im-
plica inicialmente la consolidacion del disenio RTL (Register Transfer Level), asegurando
su modularidad, escalabilidad y cumplimiento de estdndares de verificacion como UVM
(Universal Verification Methodology). Superada esta etapa, el flujo de sintesis hacia ASIC
requiere procesos adicionales, como la conversion del disefio a un flujo compatible con he-
rramientas de sintesis logica para silicio, la inserciéon de elementos de testeo estructurado
(scan chains, BIST), y la planificacion fisica preliminar del layout del chip. Asimismo, sera
necesario desarrollar una capa de abstraccion software (API y drivers) que permita utilizar
el nacleo de compresion desde sistemas operativos convencionales, como Linux o Android,
facilitando su adopcion en arquitecturas heterogéneas.

Finalmente, y una vez completadas las etapas anteriores, se podra avanzar a la etapa
de tape-out para la fabricacion del ASIC. Esta fase incluye validacion en silicio (first
silicon), pruebas funcionales post-fabricacion, validacion del encapsulado, y disefio del
PCB para entornos de evaluacion y pruebas de campo. A partir de ahi, el diseno puede
ser comercializado como IP embebible o integrado como componente dedicado en sistemas
personalizados, ya sea en almacenamiento masivo, dispositivos moéviles, plataformas IoT o

CAPITULO 7. CONCLUSION 97

centros de datos. La arquitectura propuesta, ofrece asi un camino hacia una solucion de
alto rendimiento y bajo consumo, completamente escalable y adaptable a las necesidades

futuras de procesamiento de datos.

Apéndice A

Anexo

A.1. La Desigualdad de Kraft-McMillan

Esta desigualdad es fundamental para asegurar que se esta trabajando con un coédigo
prefijo, destacandose la codificacion de Huffman como un ejemplo ampliamente utilizado
de esta clase de codigos.

La desigualdad de Kraft-McMillan es crucial para validar la no ambigiiedad de co6-
digos de longitud variable. Especificamente, establece que, para un cédigo no ambiguo
de longitud variable compuesto por n cédigos con longitudes L;, se cumple la siguiente
condicion:

d ohi<i (15)
=1

Propiedad de la desigualdad La segunda parte de la afirmacion establece lo siguiente:
dado un conjunto de n enteros positivos (L1, La, . . ., L,) que satisfacen la inecuacion ante-
rior, existe un codigo sin ambigiiedad de longitud variable tal que L; refiere a la longitud
de cada codigo individual que lo conforme. En conjunto, ambas partes indican que un
c6digo es no ambiguo si y solo si satisface esta relacion.

Relacion con la entropia La desigualdad de Kraft-McMillan puede relacionarse con el
concepto de entropia al notar que las longitudes L; pueden expresarse como:

L; = —log, P; + E,

donde E; representa la diferencia en la que L; excede la entropia, es decir, la longitud
adicional del codigo i. Sustituyendo en la desigualdad, se obtiene:
2- log, P; P.
7L,L _ 7(10 PZ+E1) . - 1
27 = 271082 = 5B ~ 3% (16)
Cuando todas las longitudes adicionales E; son iguales (E; = F), la desigualdad de
Kraft-McMillan puede expresarse como:

~P_ YLp 1
1222_E:2—E:2_E (17)

i=1

98

1

11

12

13

14

15

16

17

»

APENDICE A. ANEXO 99

De lo anterior, se deduce la relaciéon:

2 >1 — E>0 (18)

Siendo que, un coédigo sin ambigiiedad tiene una longitud adicional F; no negativa.
En otras palabras, la longitud del codigo debe ser mayor o, al menos, igual a la longitud
determinada por su entropia.

A.2. C(Cobdigo fuente

Se presenta de forma breve las partes relevantes del codigo escrito en Verilog respecto
al diseno de la arquitectura de compresion.

Codigo parcial para las instancias de modulos de busqueda.

search search_u0(
.clk (sys_clk), //Reloj
.rst_n (rst_n), //Reset activo en bajo
.look_ahead_buffer_w (look_ahead_buffer_w), //Bus del buffer de
— anticipacion
.search_buffer_w (search_buffer_wl[:0]), //Mitad inferior
<~ del bus del buffer de busqueda
.match_len (match_lenl), //Longitud de coincidencia 1
.SB_index (SB_index1) //Indice de buffer de busqueda 1
);

search search_ui(
.clk (sys_clk), //Reloj
.rst_n (rst_n), //Reset activo en bajo
.look_ahead_buffer_w (look_ahead_buffer_w), //Bus del buffer de
— anticipacion
.search_buffer_w (search_buffer_wl(: 1), //Mitad
— superior del bus del buffer de busqueda
.match_len (match_len2), //Longitud de coincidencia 2
.SB_index (SB_index2) //Indice de buffer de busqueda 2
)

Codigo parcial para el estado de busqueda: encontrar la coincidencia mas larga.

if (count_search) begin

// Seleccionar la longitud de coincidencia mas larga entre dos
— buffers de busqueda de 512 bytes

{match_len, SB_index} <= (match_lenl >= match_len2) ? {
<~ match_lenl, SB_index1} : {match_len2, (SB_index2 + 12’
— d512)}%};

ready_encode <= 1; // Preparacion a 1

finish_out <= 0; // Finalizacion de salida a O

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

APENDICE A. ANEXO 100

finish_shift <= 0; // Finalizacion de desplazamiento a 0
end

Codigo parcial para generar los datos de salida codificados.

//Generar datos de salida para coincidencia de longitud O
if (count_out == 0) begin
o_data <= {3’b0, match_len}; //Primer byte de salida:
<~ longitud de coincidencia
count_out <= 1; //Incrementar contador de salida
end
else begin
o_data <= look_ahead_buffer[15]; //Segundo byte de salida:
— datos
count_out <= 0; //Reiniciar contador de salida
finish_out <= 1; //Finalizar salida
encoded_length <= encoded_length + 1; //Incrementar
— longitud codificada
end
end
else begin
// Generar datos de salida para coincidencia de longitud no

— cero
if (count_out == 0) begin
o_data <= {SB_index[2:0], match_len}; //Primer byte de
<~ salida: ndice y longitud

count_out <= 1; //Incrementar contador de salida

end

else begin
o_data <= SB_index[10:3]; //Segundo byte de salida: ndice
count_out <= 0; //Reiniciar contador de salida
finish_out <= 1; //Finalizar salida
encoded_length <= encoded_length + match_len; //Incrementar

<~ longitud codificada
end
end

Codigo parcial para las instancias de médulos de bisqueda.

generate
// Instancia el m dulo find_equal para cada segmento del
— buffer de b squeda
for(i = 0; 1 < 16; 1 = i + 1) begin
find_equal find_equal_i(
.look_ahead_buffer (look_ahead_buffer[15]), //Buffer de
<~ adelantamiento actual
.search_buffer_w(search_buffer_w[256 = (i + 1) - 1
< 256 * i]), //Segmento del buffer de b squeda

10

11

10

11

12

13

10

APENDICE A. ANEXO 101

.equal (equal[i]), //Salida de igualdad
.match_fail (match_fail[i]) //Salida de fallo de
<~ coincidencia
)
end
endgenerate

Codigo parcial para el médulo de comparacion entre caracteres de entrada y de porciéon
del diccionario dinamico.

module find_equal (

input [7:0] look_ahead_buffer, //Entrada de 8 bits
< llamada look_ahead_buffer

input [8+#32-1:0] search_buffer_w, //Entrada de 256 bits (8
— bits * 32) llamada search_buffer_w

output [4:0] equal, //Salida de 5 bits llamada equal

output match_fail //Salida de 1 bit llamada
— match_fail

wire [7:0] search_buffer [31: 0]; //Declara un array de 32
<~ elementos de 8 bits cada uno llamado search_buffer
genvar j; //Declara una variable generadora llamada j
generate //Inicia un bloque generate para generaci n de
~— hardware
for(j=0 ; j<32 ; j=j+1)begin //Bucle for que va de 0 a 31
assign search_buffer[j] = search_buffer_w[8*(j+1) -1
< 8%xj]; //Asigna porciones de 8 bits de
— search_buffer_w a search_buffer
end
endgenerate

Codigo referente a la longitud de la coincidencia y el desplazamiento para el decodificador.

case (cur_state)
IDLE : begin
match_len <= i_data_decode[4:0]; //Longitud de
< coincidencia de los datos de entrada
offset[2:0] <= i_data_decode[7:5]; //Parte baja del
<~ desplazamiento de los datos de entrada
end

DECODE1 : begin
buffer[wptr] <= i_data_decode; //Datos de entrada en el
<~ buffer en la posici n del puntero de escritura
wptr <= wptr + 12°dl; // Incrementa el puntero de
<> escritura
decoded_length<= decoded_length + 1; // Incrementa la
<~ longitud decodificada

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

APENDICE A. ANEXO 102

end

DECODE2_1 : begin
offset[10:3] <= i_data_decode; //Parte alta del
~— desplazamiento de los datos de entrada
end

DECODE2_2 : begin

buffer [] <= buffer(1; //Valor encontrado en
< la posicion calculada por el desplazamiento

wptr <= wptr + 12°dl; //Incrementa el puntero de
<~ escritura

match_len <= match_len - 1; //Decrementa la longitud de

<> coincidencia
decoded_length<= decoded_length + 1; //Incrementa la
<~ longitud decodificada
end

FINISH : begin
wptr <= 0; //Reinicia el puntero de escritura al finalizar
end

endcase

A.3. Esquematicos de diseno de arquitectura

Se presenta los diagramas obtenidos al compilar el diseno desarrollado en el entorno de
vivado, se demuestra la correcta integracion de la arquitectura propuesta y la arquitectura
para el manejo de la tarjeta SD, asi como la misma a detalle, en la figura A.2.

APENDICE A. ANEXO 103

ot ST
]

P
oBLF

o, dabn N[l
& 'l: A

e

iy
—r0_datw o

o_dnin_DBUFISLiret
]

TBiE

o_datn_CRUFIT] it
]

Tour
st OBUF_nst
e Tl
s
Sa8_ORUF_mst
= ek
Teur

sab ELIF st
s e sidcd JCELIF st

sdan[>

TRUF

s okt

m.ouD—gD_q_

[Turos

5

Len[TE | — ; ‘

resatn 4—rang|

v
1 g
3 SV
=
=3
3

i

Bt

V2 1)

BV
i
i

. §

Lt

!

g "
;g"
E

es ¢

"foa
2
S

&7

:

i

ety

1

:

SRF st

&7

{5 saan

Figura A.1: Esquematico de diseno de arquitectura propuesta con entrada desde tarjeta
SD, elaboracion propia.

APENDICE A. ANEXO 104

e i
e -
P =
Ty =1
per—fe -

: =

=
- 2
e = £

e ST

ey ——————

e T

e
e o
ey]
L
e z.-._’

A

TV

fora {0}

[P
s =1n
Ha=
e
I =
=
]
= =
£} =T il
S = i
¥ 7 é"__ i =
[—eer— =1 A =
| Lye B — Fr—
e = = e el
Lo iim =
: = =S o I
R T { | TR
e L 1 —— =
e 1 B i e
et | | =
=0 i = ifuir=is
e Pt
__: lf _q=:§: | ! =
=T
— SirT—u
= |

Figura A.2: Esquemético de disenio de arquitectura propuesta, elaboracién propia.

Bibliografia

[1] H. T. Kung and C. E. Leiserson, “Systolic arrays for vlsi,” Proceedings of the 1978
Conference on Advanced Research in VLSI, pp. 105-116, 1978.

[2] AlinX, “Artix-7 FPGA Development Board AXT7A200.” https:// www.alinx.com
public/upload /file/AX7A200 User Manual.pdfa, 2019. [Accessed 08-11-2023|.

[3] “SD and Micro SD card pins with description and functions — elec-
troniccircuitsdesign.com.” https:/ /www.electroniccircuitsdesign.com /pinout
sd-microsd-card-pinout.html. [Accessed 29-05-2025].

[4] “Simplified Specifications - SD Association — sdcard.org.” https:/ /www.sdcard.org
downloads /pls/. [Accessed 28-05-2025].

[5] M. Satyanarayanan, N. Beckmann, G. A. Lewis, and B. Lucia, “The role of edge
offload for hardware-accelerated mobile devices,” HotMobile 21, (New York, NY,
USA), p. 2229, Association for Computing Machinery, 2021.

[6] Z. S. Jyrki Alakuijala, Evgenii Kliuchnikov and I. Lode Vandevenne, Google,
“Comparison of Brotli, Deflate, Zopfli, LZMA, LZHAM and Bzip2 Compres-
sion Algorithms.” http://ftp2.de.freebsd.org/pub/misc/cran/web/packages/brotli
vignettes/brotli-2015-09-22.pdf, 2015. [Accessed 30-05-2024].

[7] Qualcomm Technologies, Inc., “Trepn profiler - performance and power profiling tool
for android.” https:/ /developer.qualcomm.com /software /trepn-profiler, 2022. Versién
utilizada: 7.0.8940, compatible con Android 14.

[8] SD Association, “SD Specifications Part 1 Physical Layer Simplified Specification
Version 6.00.” https:/ /www.sdcard.org/downloads /pls/; 2017. [Accessed 05-05-2025].

[9] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Pro-
ceedings of the IRFE, vol. 40, no. 9, pp. 1098-1101, 1952.

[10] J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM Journal of Research and
Development, vol. 23, no. 2, pp. 149-162, 1979.

[11] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on Information Theory, vol. 23, no. 3, pp. 337-343, 1977.

105

https://www.alinx.com/public/upload/file/AX7A200_User_Manual.pdfa
https://www.alinx.com/public/upload/file/AX7A200_User_Manual.pdfa
https://www.electroniccircuitsdesign.com/pinout/sd-microsd-card-pinout.html
https://www.electroniccircuitsdesign.com/pinout/sd-microsd-card-pinout.html
https://www.sdcard.org/downloads/pls/
https://www.sdcard.org/downloads/pls/
http://ftp2.de.freebsd.org/pub/misc/cran/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
http://ftp2.de.freebsd.org/pub/misc/cran/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
https://developer.qualcomm.com/software/trepn-profiler
https://www.sdcard.org/downloads/pls/

BIBLIOGRAFIA 106

[12] S. S.A, A. Swedha, and D. Naveen, “Survey of content addressable memory,” IJCRT,
vol. 06, p. 1516, 02 2018.

[13] Kung, “Why systolic architectures?,” Computer, vol. 15, no. 1, pp. 37-46, 1982.

[14] W. Katz, Phillip W. (Glendale, “String searcher, and compressor using same,” Sep-
tember 1991.

[15] H. Hassani and S. MacFeely, “Driving excellence in official statistics: Unleashing the
potential of comprehensive digital data governance,” Big Data and Cognitive Compu-
ting, vol. 7, no. 3, 2023.

[16] CloudScene, “South America | Data Center Market Overview | Cloudscene — clouds-
cene.com.” https://cloudscene.com /region/datacenters-in-south-america, 2024. [Ac-

cessed 18-08-2024].

[17] E. Topics, “Amount of Data Created Daily (2024) — explodingtopics.com.” https:
explodingtopics.com/blog/data-generated-per-day, 2024. [Accessed 20-08-2024].

[18] INEGI, “Encuesta nacional (endutih) 2023.” https:// www.inegi.org.mx/ contenidos
saladeprensa/boletines /2024 /ENDUTIH/ENDUTIH 23.pdf, 2024. [Accessed 19-09-
2024].

[19] “Encuesta Nacional sobre Disponibilidad y Uso de Tecnologias de
la Informaciéon en los Hogares (ENDUTIH) 2023. (Comunicado de

prensa) 13 de junio | Instituto Federal de Telecomunicaciones -
IFT.” https://www.ift.org.mx/comunicacion-y-medios/comunicados-ift /es
o .

encuesta-nacional-sobre-disponibilidad-y-uso-de-tecnologias-de-la-informacion-en-los-hogares-endutih-

2024. [Accessed 13-07-2024].

[20] Branch, “Estadisticas de la situacion digital de México en el

2024 — branch.com.co.” https:/ /branch.com.co/marketing-digital
estadisticas-de-la-situacion-digital-de-mexico-en-el-2024, 2024. [Accessed 21-09-
2024].

[21] Oberlo, “Average Internet Speed by Country and Territory (2024) — oberlo.com.”
https://www.oberlo.com /statistics/average-internet-speed-by-country, 2024. [Acces-

sed 21-09-2024].

[22] L. P. Cox and L. Ao, “Levelup: A thin-cloud approach to game livestreaming,” in 2020
IEEE/ACM Symposium on Edge Computing (SEC), pp. 246-256, 2020.

[23] N.D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and F. Kaw-
sar, “Deepx: A software accelerator for low-power deep learning inference on mobile
devices,” in 2016 15th ACM/IEEE International Conference on Information Proces-
sing in Sensor Networks (IPSN), pp. 1-12, 2016.

https://cloudscene.com/region/datacenters-in-south-america
https://explodingtopics.com/blog/data-generated-per-day
https://explodingtopics.com/blog/data-generated-per-day
https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2024/ENDUTIH/ENDUTIH_23.pdf
https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2024/ENDUTIH/ENDUTIH_23.pdf
https://www.ift.org.mx/comunicacion-y-medios/comunicados-ift/es/encuesta-nacional-sobre-disponibilidad-y-uso-de-tecnologias-de-la-informacion-en-los-hogares-endutih-1
https://www.ift.org.mx/comunicacion-y-medios/comunicados-ift/es/encuesta-nacional-sobre-disponibilidad-y-uso-de-tecnologias-de-la-informacion-en-los-hogares-endutih-1
https://branch.com.co/marketing-digital/estadisticas-de-la-situacion-digital-de-mexico-en-el-2024
https://branch.com.co/marketing-digital/estadisticas-de-la-situacion-digital-de-mexico-en-el-2024
https://www.oberlo.com/statistics/average-internet-speed-by-country

BIBLIOGRAFIA 107

[24]

25]

[26]

[27]

28]

29]

[30]

[31]

32]

33

[34]

[35]

[36]

[37]

R. Lee, S. I. Venieris, L. Dudziak, S. Bhattacharya, and N. D. Lane, “Mobisr: Efficient
on-device super-resolution through heterogeneous mobile processors,” in The 25th

Annual International Conference on Mobile Computing and Networking, MobiCom
’19, (New York, NY, USA), Association for Computing Machinery, 2019.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding,” 2016.

D. Salomon and G. Motta, Handbook of Data Compression. Springer Publishing
Company, Incorporated, 5th ed., 2009.

K. Vaid, “Improved cloud service performance through ASIC acceleration | Micro-
soft Azure Blog — azure.microsoft.com.” https://azure.microsoft.com/en-us/blog
improved-cloud-service-performance-through-asic-acceleration/, 2019. [Accessed 22-

12-2024].

F. Arias-Odon, Investigacion tedrica, investigacion empirica e investigacion generati-
va para la construccion de teoria: Precisiones conceptuales 1. ResearchGate, 09 2019.

P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software development
methods: Review and analysis,” Proc. Espoo 2002, pp. 3-107, 01 2002.

M. Yadav, N. Goyal, and J. Yadav, “Agile methodology over iterative approach of
software development -a review,” in 2015 2nd International Conference on Computing
for Sustainable Global Development (INDIACom), pp. 542-547, 2015.

S. Goyal, “Agile Techniques for Project Management and Software Engineering.” http:
csis.pace.edu/ marchese/ CS616,/ Agile/ DD /fdd.pdf, 2007. [Accessed 06-03-2024].

A. F. Chowdhury and M. N. Huda, “Comparison between adaptive software develop-
ment and feature driven development,” in Proceedings of 2011 International Confe-
rence on Computer Science and Network Technology, vol. 1, pp. 363-367, 2011.

“Search Form — pascal.computer.org.” https:/ /pascal.computer.org/sev display
search.action;jsessionid=5Rz1tW1h9aRvjYnS5yIXYohC5HTs kD-HAszrfV9.
cslepavOd. [Accessed 23-03-2025].

Google, “GitHub - google/snappy: A fast compressor/decompressor — github.com.”
https://github.com /google /snappy, 2011. [Accessed 18-05-2024].

Google, “GitHub - google/gipfeli — github.com.” https://github.com /google/gipfeli,
2014. [Accessed 23-05-2024].

Google, “GitHub - google/zopfli: Zopfli Compression Algorithm is a compression li-
brary programmed in C to perform very good, but slow, deflate or zlib compression.
— github.com.” https://github.com /google /zopfli, 2012. [Accessed 28-05-2024].

Google, “GitHub - google/brotli: Brotli compression format — github.com.” https:
github.com/google /brotli, 2015. [Accessed 29-05-2024].

https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/
https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/
http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf
http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf
https://pascal.computer.org/sev_display/search.action;jsessionid=5Rz1tW1h9aRvjYnS5yIXYohC5HTs_kD-HAszrfV9.cslcpav04
https://pascal.computer.org/sev_display/search.action;jsessionid=5Rz1tW1h9aRvjYnS5yIXYohC5HTs_kD-HAszrfV9.cslcpav04
https://pascal.computer.org/sev_display/search.action;jsessionid=5Rz1tW1h9aRvjYnS5yIXYohC5HTs_kD-HAszrfV9.cslcpav04
https://github.com/google/snappy
https://github.com/google/gipfeli
https://github.com/google/zopfli
https://github.com/google/brotli
https://github.com/google/brotli

BIBLIOGRAFIA 108

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

47]

48]

[49]
[50]
[51]

M. Powell, “The Canterbury Corpus — corpus.canterbury.ac.nz.” https:// corpus.
canterbury.ac.nz/, 2000. [Accessed 30-05-2024].

S. Xie, X. He, S. He, and Z. Zhu, “Curc: a cuda-based reference-free read compressor,”
Bioinformatics, vol. 38, pp. 3294-3296, 05 2022.

S. Choi, Y. Kim, D. Lee, S. Lee, K. Park, Y. H. Song, and Y. H. Song, “Design of fpga-
based 1z77 compressor with runtime configurable compression ratio and throughput,”
IEEFE Access, vol. 7, pp. 149583-149594, 2019.

O. Plugariu, A. D. Gegiu, and L. Petrica, “Fpga systolic array gzip compressor,” in
2017 9th International Conference on Electronics, Computers and Artificial Intelli-
gence (ECAI), pp. 1-6, 2017.

G. Forman and J. Zahorjan, “The challenges of mobile computing,” Computer, vol. 27,
no. 4, pp. 3847, 1994.

M. K. J. Mahendra Pratap Singh, “Evolution of processor architecture in mobile
phones,” International Journal of Computer Applications, vol. 90, pp. 34-39, March
2014.

X. H. Xu, C. T. Clarke, and S. R. Jones, “High performance code compression archi-
tecture for the embedded arm/thumb processor,” in Proceedings of the 1st Conference
on Computing Frontiers, CF '04, (New York, NY, USA), p. 451-456, Association for
Computing Machinery, 2004.

P. Sun and J. Nunez-Yanez, “Optimizing memory power in hybrid arm-fpga chips
with lossless data compression,” in Proceedings of the FPGA World Conference 2014,
FPGAWorld ’14, (New York, NY, USA), Association for Computing Machinery, 2014.

V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein, S. McDaniel,
M. Piatek, C. Scott, M. Welsh, and B. Yin, “Flywheel: Google’s data compression
proxy for the mobile web,” in Proceedings of the 12th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI'15, (USA), p. 367-380, USENIX
Association, 2015.

A. Prakash, S. Wang, A. E. Irimiea, and T. Mitra, “Energy-efficient execution of
data-parallel applications on heterogeneous mobile platforms,” in 2015 33rd IEEFE
International Conference on Computer Design (ICCD), pp. 208-215, 2015.

J. Acharya and S. Gaur, “Edge compression of gps data for mobile iot,” in 2017 IEEE
Fog World Congress (FWC), pp. 1-6, 2017.

D. Salomon, Data Compression: The Complete Reference. Springer, 2004.
K. Sayood, Introduction to Data Compression. Morgan Kaufmann, 2017.

I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compressing and Inde-
xing Documents and Images. Morgan Kaufmann, 1999.

https://corpus.canterbury.ac.nz/
https://corpus.canterbury.ac.nz/

BIBLIOGRAFIA 109

[52] G. K. Wallace, “The jpeg still picture compression standard,” IEEE Transactions on
Consumer Electronics, vol. 38, no. 1, pp. xviii—xxxiv, 1991.

[53] M. Nelson and J.-L. Gailly, The Data Compression Book. M&T Books, 1995.

[54] G. Sandhu, “Introduction to data compression: Current methods and future trends,”
Internal Document, 2021.

[55] R. M. Gray, Entropy and Information Theory. Springer Publishing Company, Incor-
porated, 2nd ed., 2011.

[56] R. M. Fano, The transmission of information, vol. 65. Massachusetts Institute of
Technology, Research Laboratory of Electronics ..., 1949.

[57] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Pro-
ceedings of the IRFE, vol. 40, no. 9, pp. 1098-1101, 1952.

[58] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on Information Theory, vol. 23, no. 3, pp. 337-343, 1977.

[59] T. A. Welch, “A technique for high-performance data compression,” Computer, vol. 17,
no. 6, pp. 8-19, 1984.

[60] J. A. Storer and M. Cohn, “Method and apparatus for data compression using adaptive
coding,” April 2010.

[61] P. Deutsch, “Deflate compressed data format specification version 1.3,” RFC, no. 1951,
1996.

[62] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,”
Communications of the ACM, vol. 30, no. 6, pp. 520-540, 1987.

[63] P. Deutsch, “Deflate compressed data format specification version 1.3,” Tech. Rep.
RFC 1951, RFC Editor, May 1996.

[64] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard.
Springer, 1992.

[65] A.S. Inc., PDF Reference, Sizth Edition: Adobe Portable Document Format, Novem-
ber 2006.

[66] J. Li, T. Chen, and Y. Zhang, “Efficient implementation of jbig2 in document proces-
sing,” IEEE Transactions on Image Processing, vol. 15, pp. 1992-2002, July 2006.

[67] “Document management — portable document format — part 2: Pdf 2.0,” 2020.

[68] H. Samet, Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann, 2006.

[69] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press,
3rd ed., 2009.

BIBLIOGRAFIA 110

[70] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach.
Elsevier, 2012.

[71] M. J. Flynn, “Some computer organizations and their effectiveness,” IEEE Transac-
tions on Computers, vol. 100, no. 9, pp. 948-960, 1972.

[72] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on Information Theory, vol. 23, no. 3, pp. 337343, 1977.

[73] J. Doe and J. Smith, “Optimizing memory usage with lossless compression in embed-
ded systems,” Journal of Embedded Systems, vol. 45, no. 2, pp. 120-130, 2021.

[74] M. Abd El Ghany, M. El-Moursy, and A. Salama, Design and Implementation of
FPGA-based Systolic Array for LZ Data Compression. 04 2010.

[75] AMD, “AMD Extends Product Lifecycle for All Xilinx 7 Series Devices Th-
rough at Least 2035 — community.amd.com.” https://community.amd.com/t5
adaptive-computing/amd-extends-product-lifecycle-for-all-xilinx-7-series-devices
ba-p/563507. [Accessed 20-10-2024].

[76] “ALINX AX7A200: with AMD Artix FPGA Development Kit Board — xilinx.com.”
https: //www xilinx.com /products/boards-and-kits/1-1bgbcoe.html. [Accessed 20-10-
2024].

[77] J. J. Montes Salinero, Simulacion y medida de consumo en FPGAs para arquitecturas
de operadores aritméticos, 2023. Escuela Técnica Superior de Ingenieros Industriales.

[78] “IEEE Standards Association — standards-ieee-org.translate.goog.” https:
standards-ieee-org.translate.goog/ieee/830/1222/7 x tr sl=en& x tr tl=
esle x tr hl=es& x tr pto—tc. [Accessed 18-06-2025].

[79] h. Injosoft AB, “ASCII table - Table of ASCII codes, characters and symbols —

ascii-code.com.” https:/ /www.ascii-code.com/. [Accessed 09-01-2025].

[80] R. Arnold and T. Bell, “A corpus for the evaluation of lossless compression algorithms,”
in Proceedings DCC ’97. Data Compression Conference, pp. 201-210, 1997.

[81] “Calgary Corpus — data-compression.info.” https://www.data-compression.info
Corpora/CalgaryCorpus/. [Accessed 04-05-2025].

[82] Pawel Boniecki and Piotr Grabowski, “The Silesia Corpus for Compression Algorithm
Evaluation.” http:/ /sun.aei.polsl.pl/ " sdeor /index.php?page—silesia, 2003. Accessed:

2025-05-01.

[83] The Competitive Intelligence Unit (The CIU), “Evolucién del mercado de smartphones
en México 2024,” 2024. Disponible en linea.

[84] “Info-ZIP's Zip — infozip.sourceforge.net.” https:/ /infozip.sourceforge.net/ Zip.
html. [Accessed 03-05-2025].

https://community.amd.com/t5/adaptive-computing/amd-extends-product-lifecycle-for-all-xilinx-7-series-devices/ba-p/563507
https://community.amd.com/t5/adaptive-computing/amd-extends-product-lifecycle-for-all-xilinx-7-series-devices/ba-p/563507
https://community.amd.com/t5/adaptive-computing/amd-extends-product-lifecycle-for-all-xilinx-7-series-devices/ba-p/563507
https://www.xilinx.com/products/boards-and-kits/1-1bqbcoe.html
https://standards-ieee-org.translate.goog/ieee/830/1222/?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=tc
https://standards-ieee-org.translate.goog/ieee/830/1222/?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=tc
https://standards-ieee-org.translate.goog/ieee/830/1222/?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=tc
https://www.ascii-code.com/
https://www.data-compression.info/Corpora/CalgaryCorpus/
https://www.data-compression.info/Corpora/CalgaryCorpus/
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
https://infozip.sourceforge.net/Zip.html
https://infozip.sourceforge.net/Zip.html

BIBLIOGRAFIA 111

[85] “Termux — termux.dev.” https://termux.dev/en/. [Accessed 03-05-2025].

[86] “GitHub - sharkdp/hyperfine: A command-line benchmarking tool — github.com.”
https://github.com /sharkdp /hyperfine. [Accessed 03-05-2025].

[87] J. loup Gailly and M. Adler, “Zlib compression library.” https://zlib.net, 2023. Version
1.2.11, utilizada en implementaciéon NDK.

[88] A. Frumusanu, “The samsung galaxy s24 ultra review: The snapdragon 8 gen 3, ga-
laxy ai titanium,” AnandTech, February 2024. Seccién de rendimiento energético y
almacenamiento.

[89] AMD, “AMD Technical Information Portal — docs.amd.com.” https://docs.amd.
com/v/u/en-US /ugd72 TSeries Clocking. [Accessed 10-06-2025].

[90] Microsoft Corporation, “Microsoft extensible firmware initiative fat32 fi-
le system specification.” https:/ /download.microsoft.com/download /9 /c/5
9c¢Hb2167-8017-4bae-9fde-d599bac8184a /fatgen103.pdf, 2000. Especificacion técnica
oficial del sistema de archivos FAT16/FAT32.

[91] M. Corporation, “Microsoft fat specification.” https:/ /academy.chba.mit.edu/classes
networking communications/SD /FAT pdf, 2005. [Accessed 14-05-2025].

[92] J. Dobiash, “Fatl6 structure information.” https:/ /teslabs.com/openplayer/docs
docs/specs/fat16 specs.pdf; 1999. [Accessed 16-04-2025].

[93] MIT Center for Bits and Atoms, “SD cards and the FAT filesystem.” https://academy.
cba.mit.edu/classes/networking communications/SD /FAT.pdf, 2019.

[94] wangxuan95, “Dr.W.X/FPGA-SDcard-Reader — gitee.com.” https:/ /gitee.com
wangxuan95/FPGA-SDcard-Reader, 2023. [Accessed 25-04-2025].

[95] AMD, Vivado Design Suite User Guide: Programming and Debugging. AMD, 2024.
UG908 (v2024.2).

[96] AMD, “Modifying properties on the debug cores.” https://docs.amd.com/r/en-US
ug908-vivado-programming-debugging /Modifying- Properties-on-the-Debug-Cores,

2024. [Accessed 10-05-2025].

https://termux.dev/en/
https://github.com/sharkdp/hyperfine
https://zlib.net
https://docs.amd.com/v/u/en-US/ug472_7Series_Clocking
https://docs.amd.com/v/u/en-US/ug472_7Series_Clocking
https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/fatgen103.pdf
https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/fatgen103.pdf
https://academy.cba.mit.edu/classes/networking_communications/SD/FAT.pdf
https://academy.cba.mit.edu/classes/networking_communications/SD/FAT.pdf
https://teslabs.com/openplayer/docs/docs/specs/fat16_specs.pdf
https://teslabs.com/openplayer/docs/docs/specs/fat16_specs.pdf
https://academy.cba.mit.edu/classes/networking_communications/SD/FAT.pdf
https://academy.cba.mit.edu/classes/networking_communications/SD/FAT.pdf
https://gitee.com/wangxuan95/FPGA-SDcard-Reader
https://gitee.com/wangxuan95/FPGA-SDcard-Reader
https://docs.amd.com/r/en-US/ug908-vivado-programming-debugging/Modifying-Properties-on-the-Debug-Cores
https://docs.amd.com/r/en-US/ug908-vivado-programming-debugging/Modifying-Properties-on-the-Debug-Cores

	SIP-13 Eduardo Iván.pdf
	SIP-14 Eduardo Iván Mejía.pdf
	TESIS-Entrega-final-Julio-signed.pdf
	Introducción
	Planteamiento del problema
	Pregunta de investigación
	Propuesta de solución

	Objetivos
	Objetivo general
	Objetivos específicos

	Justificación
	Metodología
	Cronograma
	Estado del arte
	Compresión en dispositivos móviles

	Marco teórico
	Fundamentos matemáticos
	Teoría de la información
	Códigos prefijos
	Métodos estadísticos

	Métodos de diccionario
	Algoritmos de codificación LZ
	Un ejemplo de compresión

	Computación en paralelo
	Importancia del paralelismo
	Tipos de paralelismo
	Ventajas y retos
	Paralelismo y la taxonomía de Flynn
	Importancia de la taxonomía de Flynn
	Aplicaciones relevantes
	Aplicación en arquitecturas de compresión

	Matrices sistólicas en la arquitectura de hardware
	Método seleccionado

	Análisis
	Algoritmo LZ77 a detalle
	Complejidad computacional del algoritmo LZ77
	Impacto en el diseño de hardware

	Descripción del hardware empleado
	Características de la tarjeta AX7A200
	Especificaciones técnicas del FPGA Artix-7 XC7A200T
	Consumo energético y rendimiento térmico
	Velocidad de operación y latencia
	Escalabilidad y aplicaciones

	Desarrollo de modelo general
	Definición de casos de prueba

	Especificación de requerimientos del sistema
	Requerimientos funcionales
	Requerimientos no funcionales

	Propuesta: Compresor con ventana deslizante
	Ejemplo de comparaciones y salidas
	Diccionario dinámico

	Descripción del algoritmo de compresión en hardware
	Módulos y funcionalidades
	Maquina de estados
	Optimizaciones y rendimiento

	Descripción del algoritmo de descompresión en hardware
	Máquina de estados
	Implementación y funcionalidad

	Construcción de la lista de funcionalidades
	Preprocesamiento de datos
	Gestión de condiciones de búsqueda
	Búsqueda de coincidencias
	Bloque de decisión de coincidencias
	Generador de código comprimido

	Planeación por funcionalidades
	Diseño y desarrollo de módulos (Septiembre - Diciembre)
	Integración y validación (Enero - Junio)

	Diseño
	Diseño de matriz sistólica
	Elementos de procesamiento

	Módulo de preprocesamiento de datos
	Módulo de gestión de condiciones de búsqueda
	Módulo de búsqueda de coincidencias
	Operaciones de los ePs

	Módulo de decisión de coincidencias
	Módulo generador de código comprimido
	Especificaciones de entradas y salidas para los módulos de la arquitectura

	Construcción
	Módulo de preprocesamiento de datos
	Módulo de gestión de condiciones de búsqueda
	Estructura del módulo e implementación en verilog

	Módulo de búsqueda de coincidencias
	Especificaciones

	Modulo de decisión de coincidencias
	Generador de código comprimido

	Pruebas
	Conjunto de datos
	Dispositivos a comparar
	Consideraciones sobre el tiempo medido en dispositivos Android

	Pruebas en simulación
	Conversión de frecuencia a período
	Comparativa con Calgary Corpus
	Comparativa con Canterbury Corpus
	Comparativa con Silesia Corpus

	Pruebas en tarjeta de desarrollo
	Configuración y uso de relojes diferenciales en FPGA
	Tarjeta SD
	Implementación del acceso al sistema de archivos FAT y FAT16
	Depuración de arquitectura mediante el Analizador Lógico Integrado (ILA)
	Comparativa con Calgary Corpus
	Comparativa con Canterbury Corpus
	Comparativa con Silesia Corpus

	Consumo energético
	Análisis del consumo de potencia
	Distribución de potencia por componente en chip
	Distribución por dominio de alimentación
	Distribución jerárquica del consumo en el diseño
	Análisis térmico de la arquitectura
	Medición física
	Análisis comparativo del consumo energético
	Análisis del tiempo empleado
	Discusión de resultados

	Conclusión
	Respuesta a la pregunta de investigación
	Trabajo a Futuro

	Anexo
	La Desigualdad de Kraft-McMillan
	Código fuente
	Esquemáticos de diseño de arquitectura

