

INSTITUTO POLITÉCNICO NACIONAL
SECRETARÍA DE INVESTIGACIÓN Y POSGRADO

CARTA DE AUTORIZACIÓN DE USO DE OBRA PARA DIFUSIÓN

En la Ciudad de México el día 06 del mes de julio del año 2025, el que suscribe Eduardo Iván Mejía
Bello, alumno del programa Maestría en Ciencias en Sistemas Computacionales Móviles con número
de registro B230639, adscrito(a) a Escuela Superior de Cómputo manifiesta que es autor(a) intelectual
del presente trabajo de tesis bajo la dirección de M. en C. Erika Hernández Rubio y el Dr. Gelacio
Castillo Cabrera y cede los derechos del trabajo intitulado: Arquitectura de hardware basada en
matrices sistólicas para compresión de datos sin pérdida, al Instituto Politécnico Nacional, para su
difusión con fines académicos y de investigación.

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin
el permiso expresado del autor y/o director(es). Este puede ser obtenido escribiendo a las siguiente(s)
dirección(es) de correo. emejiab010@gmail.com, emejiab0900@alumno.ipn.mx . Si el permiso se
otorga, al usuario deberá dar agradecimiento correspondiente y citar la fuente de este.

Nombre completo y firma autógrafa del (de la)
estudiante

Página 1 de 1

mailto:emejiab010@gmail.com
mailto:emejiab0900@alumno.ipn.mx

A mi esposa y a mi gata, por darme claridad en los días difíciles y recordarme que
distraerme también es importante.

Agradecimientos

Este trabajo representa un logro en mi formación académica y personal, y no habría
sido posible sin el respaldo de personas cuya presencia ha sido determinante en este camino.
Agradezco profundamente al Dr. Gelacio Castillo Cabrera, director de esta tesis, por su
orientación constante, por inspirarme a comprender a fondo el funcionamiento interno de
los sistemas de cómputo y por fomentar en mí la iniciativa de asumir desafíos comparables
a los que enfrentan grandes industrias. Su guía encendió en mí una curiosidad que se
convirtió en el motor de esta investigación.

A la M. en C. Erika Hernández Rubio, codirectora de este trabajo, le agradezco sin-
ceramente por su apoyo durante las etapas iniciales, cuando aún no sabía cómo abordar
adecuadamente el problema, ni qué ruta debía seguir. Su claridad y firmeza fueron clave
para enfocar el esfuerzo de forma efectiva.

A mis padres, por su presencia constante, por escuchar mis ideas, por alentar mis
proyectos, y por brindarme enseñanzas y momentos que atesoro profundamente. A mi
hermana, por preocuparse por mi bienestar, por impulsarme a ser mejor cada día y por
ser una fuente incondicional de apoyo emocional.

Finalmente, a mi esposa, por acompañarme con paciencia y entrega, por escuchar
incluso lo que parecía insignificante, y por construir conmigo un camino en el que ambos
podamos crecer, comprendernos y sostenernos mutuamente. Su presencia ha sido un pilar
firme en el desarrollo de esta investigación y en la consolidación de este logro.

ii

Resumen

Se aborda el diseño de una arquitectura de hardware especializada en compresión de
datos sin pérdida, para su futura implementación como un procesador adicional en diversos
sistemas. Se realiza el diseño con los principios conocidos como matrices sistólicas. Con
ello se disminuye el uso de recursos en el procesador principal realizando la tarea de com-
presión, un proceso crítico en la vida diaria. Considerando la gran cantidad de dispositivos
y software a nivel mundial que realizan este proceso de una u otra forma, al grado que se
ha vuelto transparente para el usuario, pero, sigue siendo de suma importancia tanto en el
almacenamiento como en la transmisión de información. Con ello, debido al constante in-
cremento de generación de datos y los recursos limitados para poder procesarlos, el tráfico
de las redes y la amplia utilización del almacenamiento de datos digitales que se exige en
la actualidad; la implementación de algoritmos de compresión de datos en hardware cobra
relevancia. El documento revisa diversas técnicas de compresión sin pérdidas, desde su
fundamento matemático, como los códigos Huffman, el código aritmético y los algoritmos
de Lempel-Ziv (LZ). Se explora el conocimiento necesario para diseñar una implementa-
ción basada en el algoritmo de ventana deslizante, tomando en cuenta aspectos técnicos y
mejoras que se pueden llevar a cabo. Además, se realiza una prueba de concepto del diseño
desarrollado sobre un FPGA, aprovechando su capacidad para realizar múltiples funciones
digitales mediante la configuración de bloques lógicos programables y sus interconexio-
nes. La estructura del documento comprende secciones como introducción, planteamiento
del problema, justificación, objetivos, antecedentes, metodología, estado del arte, diseño,
construcción y pruebas.

iii

Abstract

This work presents the design of a hardware architecture specialized in lossless da-
ta compression, intended for future integration as an auxiliary processor within various
systems. The design is based on systolic array principles, enabling the offloading of com-
pression tasks from the main processor. This approach is especially relevant given that
compression is a critical process in daily computing, across devices and software worldwi-
de, to the extent that it has become transparent to the end-user. Nonetheless, compression
remains essential for both data storage and transmission.

Due to the ever-increasing generation of data and the limited resources available to pro-
cess it, as well as the demands on network traffic and digital storage, the implementation of
data compression algorithms in hardware is of growing importance. This document reviews
various lossless compression techniques, including their mathematical foundations such as
Huffman coding, arithmetic coding, and the Lempel-Ziv (LZ) family of algorithms. A de-
tailed analysis of sliding window-based implementations is presented, considering technical
trade-offs and optimization strategies.

A proof of concept of the proposed architecture was developed and tested on an FP-
GA, leveraging its reconfigurable logic blocks and interconnects to perform specialized
digital functions. The structure of this thesis includes sections on introduction, problem
statement, justification, objectives, background, methodology, state of the art, design, im-
plementation, and testing.

iv

Índice general

1 Introducción 1
1.1 Planteamiento del problema . 2

1.1.1 Pregunta de investigación . 3
1.1.2 Propuesta de solución . 3

1.2 Objetivos . 5
1.2.1 Objetivo general . 5
1.2.2 Objetivos específicos . 5

1.3 Justificación . 5
1.4 Metodología . 7
1.5 Cronograma . 8
1.6 Estado del arte . 8

1.6.1 Compresión en dispositivos móviles 13

2 Marco teórico 16
2.1 Fundamentos matemáticos . 17

2.1.1 Teoría de la información . 17
2.1.2 Códigos prefijos . 19
2.1.3 Métodos estadísticos . 20

2.2 Métodos de diccionario . 22
2.2.1 Algoritmos de codificación LZ . 23
2.2.2 Un ejemplo de compresión . 24

2.3 Computación en paralelo . 25
2.3.1 Importancia del paralelismo . 25
2.3.2 Tipos de paralelismo . 25
2.3.3 Ventajas y retos . 26
2.3.4 Paralelismo y la taxonomía de Flynn 26
2.3.5 Importancia de la taxonomía de Flynn 26
2.3.6 Aplicaciones relevantes . 27
2.3.7 Aplicación en arquitecturas de compresión 27

2.4 Matrices sistólicas en la arquitectura de hardware 27
2.4.1 Método seleccionado . 29

3 Análisis 30
3.1 Algoritmo LZ77 a detalle . 30

3.1.1 Complejidad computacional del algoritmo LZ77 32

v

ÍNDICE GENERAL vi

3.1.2 Impacto en el diseño de hardware 33
3.2 Descripción del hardware empleado . 33

3.2.1 Características de la tarjeta AX7A200 34
3.2.2 Especificaciones técnicas del FPGA Artix-7 XC7A200T 34
3.2.3 Consumo energético y rendimiento térmico 35
3.2.4 Velocidad de operación y latencia 35
3.2.5 Escalabilidad y aplicaciones . 35

3.3 Desarrollo de modelo general . 36
3.3.1 Definición de casos de prueba . 37

3.4 Especificación de requerimientos del sistema 39
3.4.1 Requerimientos funcionales . 39
3.4.2 Requerimientos no funcionales . 39

3.5 Propuesta: Compresor con ventana deslizante 40
3.5.1 Ejemplo de comparaciones y salidas 42
3.5.2 Diccionario dinámico . 43

3.6 Descripción del algoritmo de compresión en hardware 46
3.6.1 Módulos y funcionalidades . 47
3.6.2 Maquina de estados . 47
3.6.3 Optimizaciones y rendimiento . 47

3.7 Descripción del algoritmo de descompresión en hardware 48
3.7.1 Máquina de estados . 48
3.7.2 Implementación y funcionalidad . 49

3.8 Construcción de la lista de funcionalidades 49
3.8.1 Preprocesamiento de datos . 50
3.8.2 Gestión de condiciones de búsqueda 51
3.8.3 Búsqueda de coincidencias . 51
3.8.4 Bloque de decisión de coincidencias 51
3.8.5 Generador de código comprimido 51

3.9 Planeación por funcionalidades . 51
3.9.1 Diseño y desarrollo de módulos (Septiembre - Diciembre) 52
3.9.2 Integración y validación (Enero - Junio) 52

4 Diseño 53
4.1 Diseño de matriz sistólica . 53

4.1.1 Elementos de procesamiento . 55
4.2 Módulo de preprocesamiento de datos . 57
4.3 Módulo de gestión de condiciones de búsqueda 57
4.4 Módulo de búsqueda de coincidencias . 59

4.4.1 Operaciones de los ePs . 60
4.5 Módulo de decisión de coincidencias . 61
4.6 Módulo generador de código comprimido 62
4.7 Especificaciones de entradas y salidas para los módulos de la arquitectura . 63

5 Construcción 64
5.1 Módulo de preprocesamiento de datos . 64

ÍNDICE GENERAL vii

5.2 Módulo de gestión de condiciones de búsqueda 65
5.2.1 Estructura del módulo e implementación en verilog 65

5.3 Módulo de búsqueda de coincidencias . 65
5.3.1 Especificaciones . 66

5.4 Modulo de decisión de coincidencias . 66
5.5 Generador de código comprimido . 67

6 Pruebas 68
6.1 Conjunto de datos . 68
6.2 Dispositivos a comparar . 70

6.2.1 Consideraciones sobre el tiempo medido en dispositivos Android . . 70
6.3 Pruebas en simulación . 71

6.3.1 Conversión de frecuencia a período 72
6.3.2 Comparativa con Calgary Corpus 72
6.3.3 Comparativa con Canterbury Corpus 73
6.3.4 Comparativa con Silesia Corpus . 75

6.4 Pruebas en tarjeta de desarrollo . 76
6.4.1 Configuración y uso de relojes diferenciales en FPGA 76
6.4.2 Tarjeta SD . 77
6.4.3 Implementación del acceso al sistema de archivos FAT y FAT16 . . 80
6.4.4 Depuración de arquitectura mediante el Analizador Lógico Integrado

(ILA) . 83
6.4.5 Comparativa con Calgary Corpus 84
6.4.6 Comparativa con Canterbury Corpus 85
6.4.7 Comparativa con Silesia Corpus . 86

6.5 Consumo energético . 88
6.5.1 Análisis del consumo de potencia 88
6.5.2 Distribución de potencia por componente en chip 88
6.5.3 Distribución por dominio de alimentación 88
6.5.4 Distribución jerárquica del consumo en el diseño 89
6.5.5 Análisis térmico de la arquitectura 89
6.5.6 Medición física . 90
6.5.7 Análisis comparativo del consumo energético 90
6.5.8 Análisis del tiempo empleado . 91
6.5.9 Discusión de resultados . 93

7 Conclusión 94
7.1 Respuesta a la pregunta de investigación 95
7.2 Trabajo a Futuro . 96

A Anexo 98
A.1 La Desigualdad de Kraft-McMillan . 98
A.2 Código fuente . 99
A.3 Esquemáticos de diseño de arquitectura . 102

Índice de figuras

1.1 Metodología basada en funciones, basado en (18). 7

2.1 Árbol de codificación Shannon-Fano, elaboración propia. 22
2.2 Diagrama de matriz sistólica, basado en [1]. 28

3.1 Ejemplo de ventana deslizante, elaboración propia. 30
3.2 FPGA utilizada, tomado de [2] . 34
3.3 Diagrama de bloques básico de compresión, elaboración propia. 36
3.4 Texto de ejemplo, elaboración propia. 41
3.5 Diccionario propuesto, elaboración propia. 41
3.6 Diccionario con posiciones corregidas, elaboración propia. 42
3.7 Diccionario dinámico propuesto, elaboración propia. 44
3.8 Diccionario dinámico bloque 1, elaboración propia. 44
3.9 Diccionario dinámico bloque 2, elaboración propia. 44
3.10 Diccionario dinámico pequeño con bloque 1, elaboración propia. 46
3.11 Diccionario dinámico pequeño con bloque 2, elaboración propia. 46
3.12 Maquina de estados base de compresor, elaboración propia. 48
3.13 Maquina de estados base de descompresor, elaboración propia. 49
3.14 Diagrama de bloques de arquitectura inicial, elaboración propia. 50
3.15 Diagrama de bloques de arquitectura corregido, elaboración propia. 50

4.1 Diagrama de arquitectura propuesta, elaboración propia. 53
4.2 Diagrama de módulo de preprocesamiento, elaboración propia. 57
4.3 Diagrama de módulo de gestión de condiciones de búsqueda, elaboración

propia. 58
4.4 Diagrama de módulo de búsqueda de coincidencias, elaboración propia. . . 59
4.5 Diagrama de módulo de decisión de coincidencias, elaboración propia. . . . 61
4.6 Diagrama de módulo de generador de código comprimido, elaboración propia. 62

5.1 Diseño RTL de elemento de procesamiento, elaboración propia. 66
5.2 Matriz sistólica de la arquitectura, elaboración propia. 66

6.1 Diagrama de funcionamiento PLL, elaboración propia. 77
6.2 Definición de pines SPI para tarjeta SD (izquierda) y SD (derecha), basado

en [3]. 77
6.3 Escritura de múltiples bloques hacia tarjeta SD, basado en [4]. 79
6.4 Arquitectura para manejar tarjeta SD, basado en [4]. 79

viii

ÍNDICE DE FIGURAS ix

6.5 Maquina finita de estados para manejar tarjeta SD, elaboración propia. . . 81
6.6 Acceso a SD correcto, elaboración propia. 83
6.7 Consumo energético de arquitectura propuesta, elaboración propia. 89

A.1 Esquemático de diseño de arquitectura propuesta con entrada desde tarjeta
SD, elaboración propia. 103

A.2 Esquemático de diseño de arquitectura propuesta, elaboración propia. . . . 104

Indice de tablas

1.1 Comparación de velocidad de dispositivos móviles y procesadores, adaptado
de [5] . 3

1.2 Cronograma - 2 semestre (B2024), elaboración propia. 8
1.3 Cronograma - 3 semestre (A2025), elaboración propia. 8
1.4 Cronograma - 4 semestre (B2025), elaboración propia. 8
1.5 Comparación de algoritmos de compresión, tomado de [6]. 10

2.1 Comparación entre compresión sin pérdida y con pérdida, elaboración propia. 16

3.1 Valores ASCII de los caracteres de ejemplo, elaboración propia. 41
3.2 Decisión con seis símbolos, elaboración propia. 43
3.3 Entrada completa, elaboración propia. 44
3.4 Entrada completa con diccionario dinámico pequeño, elaboración propia. . 45

4.1 Segmentos en los que se divide el diccionario, elaboración propia. 54
4.2 Entradas y salidas de los módulos, elaboración propia. 63

6.1 Resumen de rendimiento y consumo en Samsung S24 Ultra, basado en [7]. 71
6.2 Comparación Calgary Corpus en simulación, elaboración propia. 73
6.3 Comparación Canterbury Corpus en simulación, elaboración propia. 74
6.4 Comparación Silesia Corpus en simulación, elaboración propia. 75
6.5 Modos de operación disponibles en tarjetas SD, basado en [8]. 79
6.6 Comparación Calgary Corpus en tarjeta física, elaboración propia. 85
6.7 Comparación Canterbury Corpus en tarjeta física, elaboración propia. . . . 86
6.8 Comparación Silesia Corpus en tarjeta física, elaboración propia. 87
6.9 Distribución de corriente por dominio de alimentación, elaboración propia. 89
6.10 Comparación del consumo energético entre simulación y medición física. . . 91
6.11 Comparación de rendimiento: Arquitectura propuesta vs. Samsung S24 Ul-

tra, elaboración propia. 91

x

Capítulo 1

Introducción

En la actualidad, el mundo se encuentra rodeado de dispositivos que generan datos
digitales constantemente. Desde los teléfonos móviles hasta los automóviles, los electro-
domésticos inteligentes o los equipos médicos, todos estos aparatos producen y procesan
información a un ritmo impresionante. Sin embargo, muchos de ellos enfrentan limitaciones
como el espacio, el peso y el consumo energético, lo que hace que no siempre sea práctico
usar procesadores genéricos diseñados para todo tipo de tareas. En este contexto, las so-
luciones de hardware dedicado están ganando protagonismo. Por ejemplo, un refrigerador
puede usar sensores específicos para medir el nivel de agua o un automóvil puede depender
de componentes dedicados para gestionar su sistema de frenos. Estas soluciones no solo
mejoran el rendimiento, sino que optimizan los recursos disponibles, lo cual es clave en
dispositivos pequeños y de bajo consumo. Lo más interesante es que estas tecnologías no
están limitadas a laboratorios o proyectos de alta tecnología. Muchas de las cosas que
se usan a diario ya dependen de microcontroladores y otros componentes dedicados para
tareas como encender una pantalla, controlar un robot en una fábrica o monitorear signos
vitales en un hospital.

El presente trabajo explora una arquitectura de hardware basada en la teoría de matri-
ces sistólicas, que ofrece una combinación eficiente de potencia de procesamiento y flexibi-
lidad. Estas arquitecturas son especialmente útiles en tareas repetitivas como la búsqueda
y comparación realizada en la compresión de datos digitales, donde se busca reducir el
espacio que ocupan los archivos sin perder información importante. Un ejemplo práctico
sería un teléfono móvil que almacena más fotos o videos sin sacrificar espacio, gracias a
que usa hardware diseñado para comprimir y descomprimir datos de manera rápida y efi-
ciente. A lo largo de la historia se han propuesto y utilizado ampliamente muchas técnicas
de compresión de datos sin pérdidas, por ejemplo, el código Huffman [9], código aritmético
[10] y algoritmos de Lempel-Ziv (LZ) [11]. Diferentes arquitecturas de hardware, incluida
la memoria de contenido direccionable [12], matriz sistólica [13], entre otras, se han pro-
puesto. Con ello se han presentado varias realizaciones de hardware de LZ y sus variantes.
Algunas hasta han sido patentadas [14],

Para las pruebas del diseño propuesto se utiliza una plataforma FPGA, que es un dis-
positivo reconfigurable. Esto permite probar y ajustar el diseño de hardware sin necesidad
de fabricarlo desde cero, reduciendo costos y acelerando el desarrollo. Motivado por llegar
a ser integrado en dispositivos móviles a futuro, para hacerlos más eficientes y capaces.

1

CAPÍTULO 1. INTRODUCCIÓN 2

En un mundo donde cada byte de información cuenta, esta propuesta representa un paso
importante para afrontar los retos del presente y colaborar en el futuro. Con tecnologías
como esta, se abre la posibilidad de transformar no solo los dispositivos actuales, sino
también la forma en que se maneja la enorme cantidad de datos producidos.

1.1. Planteamiento del problema
En la era actual, el acceso y la generación de información digital han alcanzado niveles

sin precedentes gracias al avance de tecnologías como el Internet, los dispositivos móviles,
las redes sociales, la domótica e incluso los propios sistemas operativos que utilizan estos
dispositivos. Este ecosistema ha provocado un incremento exponencial en la cantidad de
datos digitales generados (en adelante, simplemente "datos"), que deben ser transmitidos
entre dispositivos y almacenados para su consulta o uso futuro. Estudios recientes revelan
que el 90 % de los datos actuales han sido generados en los últimos dos años. En 2023, la
generación global de datos alcanzó los 120 zettabytes y se espera que en 2025 ascienda a
181 zettabytes [15]. [16, 17] Este crecimiento plantea desafíos importantes, especialmente
en países como México, que, tomando de ejemplo, se tienen 172 centros de datos, ocupando
el puesto 12 en generación de datos a nivel mundial, por delante de países como India (152)
y España (143). Respecto a los dispositivos celulares, de acuerdo con INEGI [18, 19] en
el mismo periodo, 97.2 millones de personas usaban un teléfono celular en México, repre-
sentando el 97.1 % de personas que se conectan a Internet. A pesar de este panorama, la
infraestructura de conectividad presenta limitaciones significativas: en 2023, la velocidad
promedio de descarga en México fue de 60.28 Mbps para conexiones de banda ancha fija y
de 25.26 Mbps para datos móviles, ubicándose en los puestos 69 y 80 a nivel global, respec-
tivamente [20, 21]. El almacenamiento y la transmisión de datos, tanto a nivel global como
en México, enfrentan un aumento constante en la demanda, superando la capacidad pro-
medio de transmisión disponible. Esta disparidad se agrava en los dispositivos móviles, que
deben balancear limitaciones de tamaño, peso, consumo energético, poder de cómputo, en-
tre otros. Estas características que se debe tener en cuenta al diseñar con orientación a los
dispositivos móviles, dificultan el manejo de datos mediante soluciones basadas únicamente
en software, considerando la necesidad de tener enfoques más dedicados. [5] Actualmente,
las estrategias para superar estas limitaciones incluyen, por un lado, la transferencia de
operaciones intensivas a la nube mediante Internet, y, por otro, el uso de aceleradores de
hardware diseñados específicamente para tareas particulares en dispositivos móviles. Entre
estos extremos existen soluciones intermedias, como aceleradores de hardware programa-
bles, que ofrecen flexibilidad y eficiencia en diversas aplicaciones. El avance tecnológico
impulsado por la Ley de Moore ha beneficiado de forma desigual a los dispositivos móviles
y a los dispositivos fijos, dejando en evidencia las brechas de capacidad de procesamiento
entre ambos (ver tabla 1.1), donde se observa que, aun comparando los celulares de gama
alta contra el promedio de procesadores de uso doméstico, sigue existiendo una brecha
entre las prestaciones que pueden ofrecer cada uno. Siendo los dispositivos móviles en la
actualidad muy capaces en comparación con hace 20 años o tan solo 10 años, pero los
usuarios también cada vez esperan un mayor desempeño contenido en un menor tamaño,
por ejemplo, el reconocimiento de voz, o fotografías con gran cantidad de datos tomadas

CAPÍTULO 1. INTRODUCCIÓN 3

en una fracción de segundo. Estos desafíos resaltan la necesidad de hardware especifico y
diseñado con las mejores técnicas posibles.

Tabla 1.1: Comparación de velocidad de dispositivos móviles y procesadores, adaptado de
[5]

Computadora típica Dispositivo móvil típico Año
Procesador Velocidad Dispositivo Velocidad

Intel Core 2 Duo E6600 4.8 GHz (2 cores) Apple iPhone 412 MHz 2007
Intel Core i5-2500K 13.2 GHz (4 cores) Samsung Galaxy S2 2.4 GHz (2 cores) 2011
Intel Core i5-3570K 13.6 GHz (4 cores) Samsung Galaxy S4 6.4 GHz (4 cores) 2013
Intel Core i5-6600K 14 GHz (4 cores) Samsung Galaxy S7 7.5 GHz (4 cores) 2016
AMD Ryzen 5 1600 38.4 GHz (12 cores) Google Pixel 2 17.4 GHz (8 cores) 2017
AMD Ryzen 5 3600 43.2 GHz (12 cores) Samsung Galaxy S20 18.46 GHz (8 cores) 2020

AMD Ryzen 7 5700X 54.4 GHz (16 cores) Samsung Galaxy S24 Ultra 22.89 GHz (8 cores) 2024

En investigaciones realizadas, se ha demostrado que los circuitos integrados de apli-
cación especifican (ASIC) pueden ayudar a contrarrestar las limitaciones presentes en los
dispositivos móviles [22], logrando tareas como la inferencia en el aprendizaje profundo [23]
o la superresolución de imágenes [24]. Estos avances demuestran el potencial del diseño de
hardware enfocado en problemas específicos.

Dado el aumento en la generación de datos y las limitaciones de conectividad y alma-
cenamiento, es necesario tener en cuenta soluciones más eficientes. Este trabajo se centra
en el diseño de una propuesta de compresión de datos en hardware, con el objetivo de
ayudar a mitigar el uso del ancho de banda y almacenamiento en la actualidad y ser parte
de la base de soluciones utilizadas en el futuro. Se busca generar una solución mediante
hardware específico en compresión de datos para mejorar el uso de los recursos limitados
disponibles.

1.1.1. Pregunta de investigación

¿Cómo se puede mejorar la utilización de hardware dedicado para comprimir archivos
de texto sin pérdida?

1.1.2. Propuesta de solución

El incremento en la generación de datos requiere estrategias que combinen eficiencia
y rendimiento. Para abordar esta problemática, se propone una arquitectura de hardware
de compresión sin pérdida basada en el algoritmo LZ77, utilizando matrices sistólicas
y presentada en un dispositivo de desarrollo de hardware (FPGA). Esta solución busca
aprovechar en lo posible de mejor forma los recursos disponibles, con la motivación que en
el futuro pueda llegar a ser implementado en dispositivos móviles, liberando al procesador
principal de tareas intensivas de compresión y descompresión. A continuación, se detalla
brevemente los aspectos clave de la propuesta a desarrollar.

1. Estrategia de compresión

a) Algoritmo base: LZ77 se seleccionó por su forma de funcionamiento, identifican-
do patrones en los datos para reducir el tamaño de la información eliminando la

CAPÍTULO 1. INTRODUCCIÓN 4

redundancia, todo ello sin perder información en el proceso. Su implementación
en hardware permite paralelismo a nivel de bits.

b) Implementación en matrices sistólicas: Generan una estructura eficiente para
la implementación del algoritmo basado en LZ77. Cada celda en la matriz se
diseña para realizar operaciones de comparación y desplazamiento de patrones,
Se busca optimizar la búsqueda y comparación de los datos.

2. Arquitectura de hardware

a) Unidad de compresión: Diseñada como un módulo específico dentro del FPGA,
se encarga de aplicar el algoritmo LZ77 mediante una configuración paralela.

b) Procesamiento en paralelo: El diseño utiliza una matriz sistólica para procesar
el texto, para maximizar el rendimiento y reducir la latencia.

c) Gestión de memoria: Se utilizan buffers para manejar segmentos de datos y
disminuir el acceso a memoria externa, mejorando la eficiencia energética y
reduciendo los tiempos de espera.

3. Tarjeta de desarrollo

a) Se selecciono un FPGA por su flexibilidad y capacidad de re-configuración para
realizar pruebas del diseño, sin requerir la fabricación y los recursos que ello
conlleva. El diseño inicial utiliza hardware de pruebas compatible con lenguajes
de descripción de hardware (VHDL/Verilog).

a) Ventajas: Flexibilidad para ajustar el diseño y corregirlo, escalable y se pue-
de configurar de formas diferentes, posibilidad de reutilizar bloques en futuros
diseños.

4. Estrategia de validación

a) Simulación y verificación: Se utilizarán herramientas específicamente desarro-
lladas para diseño de hardware, en este caso Vivado de AMD para sintetizar el
diseño y simular su comportamiento frente a diferentes entradas de datos.

b) Rendimiento: Comparación de rendimiento entre soluciones de software y la
implementación en hardware. Se busca validar una mejora en la velocidad de
compresión entre el 20 % y 47 % [25].

c) Métricas de evaluación:

1) Latencia: Tiempo empleado en comprimir bloques de datos.
2) Eficiencia Energética: Consumo energético comparado con soluciones pura-

mente de software.
3) Rendimiento: Capacidad de procesar datos en paralelo y que tasas de com-

presión se alcanzaron.

CAPÍTULO 1. INTRODUCCIÓN 5

1.2. Objetivos

1.2.1. Objetivo general

Diseñar una arquitectura de hardware especializada en compresión de texto sin pérdida,
basada en LZ77, empleando matrices sistólicas.

1.2.2. Objetivos específicos

1. Analizar los algoritmos de compresión de texto, considerando sus limitaciones, be-
neficios, eficiencia y rendimiento.

2. Comparar y seleccionar una técnica para implementar la compresión de texto en
hardware, contemplando la eficiencia, rendimiento y adaptabilidad.

3. Diseñar una arquitectura de hardware que integre los elementos necesarios para la
configuración de una matriz sistólica, enfocada en compresión de texto sin pérdida.

4. Validar la arquitectura diseñada de compresión sin pérdida, comprobando tasa de
compresión, tiempo de procesamiento y parámetros de energía.

1.3. Justificación
El crecimiento sostenido del volumen de datos digitales, impulsado por la accesibilidad

a la creación, almacenamiento y comunicación mediante dispositivos móviles, las redes
5G, los dispositivos IoT (Internet of Things en inglés), redes sociales, inteligencia artificial
(IA) y dispositivos autónomos, entre otros, han generado un incremento considerable en el
número de dispositivos que aportan y transmiten datos [20], [21]. Este aumento de datos
digitales conlleva un incremento en los costos, la complejidad y el consumo energético
requerido para almacenar o transmitir los datos.

El incremento de datos digitales ha transformado las necesidades de infraestructura
tecnológica. En México, las carencias respecto al ancho de banda y almacenamiento con-
trastan con el crecimiento exponencial en la generación de datos, que alcanzó los 120
zettabytes en 2023 y se proyecta a 181 zettabytes para 2025 a nivel mundial [15].

Estas cifras son evidencia de que la capacidad de transmisión y almacenamiento de
datos no puede mantenerse al ritmo de la generación de información. Con ello, el diseño
de hardware dedicado para compresión de datos surge como una solución, especialmente
en dispositivos móviles, que son el principal medio de acceso a Internet, representando el
97.1 % de la población que se conecta a Internet en el país [18].

Se ha investigado ampliamente en el campo de la compresión de datos [25], [26]. Esta
técnica busca reducir el tamaño de los datos, mejorando así la eficiencia del almacenamien-
to y reduciendo los requisitos de ancho de banda para la transmisión. De forma general se
puede clasificar en dos grandes vertientes, compresión con o sin pérdida, dependiendo de
los requisitos de integridad de los datos. La compresión con pérdida supone que se puede
tolerar cierta degradación en los datos, como ocurre con los archivos de audio en formato

CAPÍTULO 1. INTRODUCCIÓN 6

MP3, donde la disminución de calidad no es tan evidente para el oído humano. En con-
traste, la compresión sin pérdida se utiliza cuando es fundamental mantener la integridad
de los datos, como en los archivos de texto, donde perder un solo carácter puede causar
errores en la interpretación del contenido o incluso dejar ilegible el documento. También
se debe tener claro que la vida diaria está rodeada de dispositivos de hardware dedicados
y que de hecho son esenciales para las tareas comunes, por ejemplo, los microcontrolado-
res que manejan la salida a pantalla de los televisores, la medición del nivel de agua en
refrigeradores, la unidad de control del motor (ECU) en los autos, el control de robots
en líneas de ensamblaje, dispositivos médicos y de seguridad, entre otros. Considerando
solo hardware dedicado a compresión de datos, compañías como Microsoft, Broadcom,
AMD, ARM o Cadence, están trabajando en ello [27]. La motivación del presente trabajo
es llegar a ser utilizado en dispositivos móviles en el futuro, ya que tienen la penalización
por su misma naturaleza en sus limitaciones de tamaño, peso, y consumo energético, lo
cual se traduce en un poder computacional significativamente menor en comparación con
dispositivos estáticos. [5] Aunque estrategias como el offloading a nubes o cloudlets han
sido exitosas, la implementación de aceleradores de hardware en los propios dispositivos
móviles, como ASICs (Application-Specific Integrated Circuits), ofrece diversas ventajas,
incluyendo baja latencia, operación en condiciones desconectadas y eficiencia energética
superior. No obstante, el diseño e implementación de dispositivos de hardware específicos
tiene ciertas barreras que en soluciones por software no existen, los más destacables son
los altos costos de desarrollo y la falta de flexibilidad para realizar múltiples aplicaciones
o realizar mejoras o correcciones.

En México, la conectividad limitada y la velocidad promedio de descarga, que ocupa
los puestos 69 y 80 a nivel mundial para banda ancha fija y datos móviles respectivamente
[20, 21], amplifican la necesidad de soluciones locales para la compresión de datos. El
desarrollo del diseño de la arquitectura de compresión se planea para reducir el volumen
de datos que la información utiliza tanto para poderse transmitir como para almacenarse
en los dispositivos y liberar recursos en el procesador principal para otras tareas menos
repetitivas o con necesidad más inmediata.

Además, optar por investigación en hardware diseñado para tareas específicas, no solo
considera las necesidades inmediatas, sino que posiciona a México como un participante
activo en la creación de soluciones escalables y eficientes frente a los retos globales que la
creciente generación de datos crea.

En este contexto, surge el interés por el desarrollo de diseño de hardware dedicado
en la compresión sin pérdida, aunque, por el tiempo y recursos que requiere la puesta en
marcha de un hardware de propósito especifico, se utiliza una arquitectura intermedia para
realizar pruebas del diseño propuesto.

El diseño de una arquitectura de hardware de compresión basada en algoritmos como
LZ77, implementada en plataformas FPGA, representa un paso crucial hacia una gestión
de datos más eficiente en dispositivos móviles. Esta propuesta no solo aborda los retos
actuales, sino que sienta las bases para la evolución tecnológica en México, aprovechando
las ventajas de los aceleradores de hardware para mejorar el rendimiento y disminuir el
consumo energético en un entorno de creciente generación de datos en dispositivos móviles.

CAPÍTULO 1. INTRODUCCIÓN 7

1.4. Metodología
La metodología planeada para utilizarse a lo largo de este desarrollo principalmente

es la basada en investigación teórica, ya que se centra en la creación y evaluación de
teorías o modelos que describen y explican fenómenos en ciencias de la computación.
En términos generales, se ha distinguido la teoría como lo opuesto a la práctica [28].
La investigación teórica, utiliza la forma de pensar e investigar en búsqueda de soluciones
mediante la imaginación, abstracción, deducción; con ello desarrolla explicaciones o teorías
sobre fenómenos. Se fundamenta en la corriente racionalista y es propia de las ciencias
formales cuyos objetos de estudio son ideales o intangibles, como la matemática, lógica,
física teórica o lingüística. Las técnicas incluyen la formulación de hipótesis, la construcción
de modelos y la evaluación lógica. De esta forma se hará uso de lenguajes de diseño de
hardware, específicamente de lenguajes de descripción de hardware, de los cuales se usan
ampliamente VHDL y Verilog a nivel escolar e industrial. Teniendo en cuenta herramientas
para analizar y corroborar los datos, como Vivado de AMD, el cual provee un entorno
para diseño de tanto entradas como salidas, síntesis, lógica de las señales, verificación y
simulación; siendo totalmente compatible con el hardware propuesto para la realización de
este trabajo. Guiado por la metodología principal, se pretende utilizar para casos específicos
en la prueba de concepto [29], [30], la metodología basada en funciones (Feature Driven
Development) que ayuda a dimensionar y priorizar las actividades, dando prioridad a las
funcionalidades más críticas. Consiste en cinco procesos, que proveen los métodos, técnicas
y guías necesarias, los cuales se muestran en la siguiente figura.

Figura 1.1: Metodología basada en funciones, basado en (18).

La elección de estas metodologías se basa en el interés de estructurar el trabajo, ya que
se realizará una investigación con enfoque a nivel teórico, de la cual se realizará una prueba
de concepto en hardware, sustentada en teorías ya documentadas, así como desarrollar
nuevo trabajo a partir de ellas, con la experimentación guiada con funciones puestas en
marcha.

Como se puede apreciar, la metodología basada en funciones comienza con un modelo
general que se va refinando proceso a proceso hasta llegar a su culminación. Parte de interés
del uso específico de esta metodología recae en que las últimas dos fases son iterativas.
Dando como resultado un mejor manejo de los pormenores que surjan en las fases que más
trabajo requieren del sistema a desarrollar [30], [31], [32]. Para las etapas de representación
de la arquitectura propuesta, por facilidad de comprensión se utilizan diagramas de bloques
para visualización de las etapas por las que pasan las señales que representan la información
procesada [33].

CAPÍTULO 1. INTRODUCCIÓN 8

1.5. Cronograma
El cronograma se dividió por semestres, para una fácil lectura, se consideraron a grandes

rasgos las actividades de mayor importancia para el diseño de la arquitectura de hardware,
los apartados de investigación y el desarrollo de este. Se considero el ajuste en lo posible
con las vacaciones que hay entre ellos.

Tabla 1.2: Cronograma - 2 semestre (B2024), elaboración propia.
Actividad Febrero Marzo Abril Mayo Junio

Definición del tema y objetivos de la tesis
Revisión de literatura
Análisis comparativo

Familiarización con herramientas de diseño
Redacción de tesis (Capitulo 1 y 2)

Revisión con comité tutorial

Tabla 1.3: Cronograma - 3 semestre (A2025), elaboración propia.
Actividad Septiembre Octubre Noviembre Diciembre Enero

Diseño preliminar
Diseño de arquitectura

Integración de arquitectura
Implementación en hardware

Redacción de tesis (Capitulo 3)
Revisión con comité tutorial

Tabla 1.4: Cronograma - 4 semestre (B2025), elaboración propia.
Actividad Febrero Marzo Abril Mayo Junio
Simulación

Implementación del diseño en hardware
Desarrollo de la prueba de Concepto

Optimización
Redacción de tesis

Revisión con comité tutorial

1.6. Estado del arte
En la actualidad, existe una amplia variedad de propuestas de compresión de datos,

desarrolladas tanto por instituciones académicas como por grandes empresas tecnológicas,
como Microsoft y Google. En particular, Google ha hecho público el trabajo realizado en
el desarrollo de al menos cuatro algoritmos de compresión basados en el algoritmo LZ77.
Uno de estos algoritmos es Snappy [34], el cual ha sido de código abierto desde 2011, y su
versión más reciente (1.2.1) fue lanzada en mayo del año 2024. Snappy es una biblioteca

CAPÍTULO 1. INTRODUCCIÓN 9

especializada en la compresión y descompresión de datos, no está diseñada con el objetivo
de alcanzar la máxima compresión ni de ser compatible con otras bibliotecas de com-
presión, sino en lograr velocidades extremadamente altas con una compresión razonable.
Comparada con el modo más rápido de Zlib, Snappy es aproximadamente diez veces más
rápida en la mayoría de los casos, aunque los archivos comprimidos resultantes pueden ser
entre un 20 % y un 100 % más grandes. Tomando en consideración el rendimiento, Snappy
está diseñado para ser extremadamente rápido. En un solo núcleo de un procesador Core
i7 en modo de 64 bits, puede comprimir datos a aproximadamente 250 MB/s o más, y
descomprimirlos a alrededor de 500 MB/s o más (a modo de comparación, Zlib (Deflate)
comprime a 74 MB/s en su configuración más rápida y a 24 MB/s con la configuración
predeterminada). Estos valores corresponden a las entradas más lentas en su conjunto de
pruebas, aunque este aumento de velocidad se logra a expensas de la relación de compre-
sión, ya que la relación de compresión de Snappy es entre un 20 % y un 100 % menor que la
de Zlib. En sus evaluaciones, Snappy supera en velocidad a otros algoritmos de compresión
similares (como LZO, LZF, QuickLZ, etc.), manteniendo tasas de compresión comparables.
Las tasas de compresión típicas, basadas en su conjunto de pruebas, son aproximadamente
1.5 a 1.7 veces para texto sin formato, de 2 a 4 veces para HTML, y 1.0 vez para archivos
JPEG, PNG y otros datos ya comprimidos. En comparación, Zlib en su modo más rápido
ofrece tasas de 2.6-2.8x, 3-7x y 1.0x respectivamente. Algoritmos más avanzados pueden
alcanzar tasas de compresión superiores, aunque generalmente a costa de una menor veloci-
dad. Es importante destacar que la relación de compresión puede variar significativamente
según el tipo de datos de entrada. Aunque Snappy es bastante portátil, está optimizado
principalmente para procesadores x86 de 64 bits y puede rendir de manera menos eficiente
en otros entornos y los algoritmos de compresión rápida como Snappy son tan rápidos que
las operaciones de E/S pueden ser el cuello de botella del algoritmo. Una de las ventajas
inherentes de utilizar matrices sistólicas en el proyecto a desarrollar. El segundo algoritmo
desarrollado por Google es nombrado Gipfeli [35], el cual es un algoritmo de compresión
de alta velocidad que utiliza referencias hacia atrás con una ventana deslizante de 16 bits.
Está basado en el trabajo de Lempel y Ziv de 1977, y se ha mejorado con una codifi-
cación de entropía ad-hoc tanto para literales como para referencias hacia atrás. Esta
implementado en C++, en palabras de sus desarrolladores, esta optimizado para lograr un
rendimiento excepcionalmente alto, aunque es aproximadamente un 30 % más lento que
Snappy, pero logra un 30 % más de relación de compresión. La tasa de compresión que
ofrece es comparable a la de Zlib en su modo más rápido, pero Gipfeli es aproximadamen-
te tres veces más rápido. Esto lo convierte en una solución ideal para numerosos sistemas
con limitaciones de ancho de banda, almacenamiento temporal de datos y procesamiento
paralelo. Respecto al tercer algoritmo desarrollado por Google, es conocido como Zopfli
[36]. El propósito de Zopfli es comprimir datos en el formato Deflate (basado en LZ77 par-
cialmente) con una eficiencia superior a la de implementaciones tradicionales como gzip y
Zlib. Concretamente, Zopfli logra generar archivos comprimidos entre un 3.7 % y un 8.3 %
más pequeños en comparación con gzip utilizando la opción –best. Sin embargo, el tiem-
po requerido para su ejecución es significativamente mayor, siendo aproximadamente cien
veces más lento que gzip. Ya que el formato de datos que espera y general el algoritmo
LZ77 es muy utilizado en la industria, también los datos comprimidos con Zopfli se pueden
integrar en las aplicaciones sin problemas de compatibilidad. Un uso destacado de Zopfli

CAPÍTULO 1. INTRODUCCIÓN 10

se encuentra en la web, donde se pueden comprimir las páginas estáticas, y el navegador al
momento de visualizarlas las descomprime. Aunque la mejora en los tiempos de carga para
el usuario final puede pasar desapercibida, en los dispositivos móviles, estas optimizaciones
pueden notarse al tener un menor consumo energético. Otro uso que puede tener Zopfli
es en las imágenes PNG, ya que también utilizan el algoritmo LZ77, lo cual se traduce
en ahorros significativos en la transmisión de datos, dado el gran uso de PNG en la web.
Sin embargo, debido a su bajo rendimiento en términos de velocidad, Zopfli podría no ser
adecuado para la compresión de contenido personalizado. Respecto al último algoritmo de
Google, es llamado Brotli [37], fue lanzado en 2015 y su última versión publicada fue la
1.1.0 en agosto de 2023. A diferencia de su predecesor Zopfli, Brotli no está diseñado para
ser compatible con el algoritmo LZ77. En lugar de eso, Brotli aspira a ser un reemplazo
moderno para LZ77. Dado que LZ77 es conocido por su rapidez tanto en la compresión
como en la descompresión, además de su razonable relación de compresión, Brotli debe
igualar o superar estas características para ser considerado un sustituto viable. Siendo un
algoritmo de compresión sin pérdidas de propósito general que emplea una combinación de
una variante moderna del algoritmo LZ77 y codificación Huffman. Esto le permite lograr
una relación de compresión comparable a los métodos de compresión de propósito general
más eficaces disponibles en la actualidad. Además, aunque su velocidad es similar a la de
Deflate, Brotli ofrece una compresión significativamente más densa. Los cuatro algoritmos
demuestran que en la práctica se sigue utilizando los algoritmos LZ, de forma pura o con
variaciones de este, no solo porque tiene un soporte completo en los sistemas actuales, sino
que es relativamente simple y rápido codificar y decodificar con él. Lo que da pie a real-
mente definir lo importante para tener en cuenta respecto a selección de algún algoritmo.
Si considerar una variación de LZ, como LZ77 por ser el estándar en el cual se basan los
demás algoritmos, o elegir alguna de las nuevas propuestas antes mencionadas. En [6] se
comparó Brotli, Deflate incluido en la biblioteca Zlib, Zopfli, LZHAM, entre otros, limitan-
do la selección de algoritmos a aquellos que generalmente tienen una tasa de compresión
mayor que Deflate. Cabe aclarar que los resultados de las pruebas en su gran mayoría siem-
pre dependen de las características del hardware sobre el cual se ejecutan, pero brindan
la información suficiente para poder tener nociones de que parámetros se deben tener en
consideración al momento de medir el rendimiento de la propuesta. Utilizando un set de
datos estándar para poder corroborar y comprobar el funcionamiento de los compresores,
en [6] utilizaron el corpus Canterbury [38], el cual contiene 1285 archivos con un total de
70,611,753 bytes. Considerando la velocidad de compresión y el nivel de compresión (la
relación entre el peso del archivo original y el resultante), entre otras comparaciones que
se pueden leer más a detalle en la referencia. La tabla 1.5 muestra los resultados de dicha
comparación.

Tabla 1.5: Comparación de algoritmos de compresión, tomado de [6].
Algoritmo Nivel de compresión Velocidad de compresión (Mb/s) Velocidad de descompresión (Mb/s)
Deflate:1 2.913 93.5 323
Deflate:9 3.371 15.5 347.3
Brotli:1 3.381 98.3 334
Brotli:11 4.347 0.5 289.5
Zopfli 3.580 0.2 342.1

CAPÍTULO 1. INTRODUCCIÓN 11

Donde, como se mencionó antes, debido a que son algoritmos de software que dependen
del hardware, los resultados son muy dependientes del ancho de banda del almacenamien-
to utilizado, el procesador, la memoria RAM, el sistema operativo, la cantidad de otros
procesos ejecutándose, etc.. . . , más aún, el artículo fue creado por Google, por lo tanto, es
razonable entender que tiene cierta tendencia a hacer notar que el algoritmo Brotli ofrece
mejores resultados que sus contrapartes. Los resultados de la tabla 1.5 dan la oportunidad
de conocer el rendimiento promedio que tiene Deflate y sus contrapartes actuales fun-
cionando en dispositivos anfitriones de 64 bits. Los cuales se aprecia que están limitados
principalmente por el sistema operativo, ya que, al ser un sistema de propósito general,
tiene que asignar el tiempo a diversas tareas, disminuyendo las prestaciones que puede
ofrecer el algoritmo. Considerando la plataforma CUDA de NVIDIA, representa una vía
clave para la realización de pruebas, gracias a la capacidad de sus GPUs para manejar
tareas computacionales de alta demanda mediante programación paralela. Esta dependen-
cia puede ser percibida como una ventaja o una desventaja, de acuerdo con las metas
específicas de cada proyecto. CUDA ofrece un entorno con herramientas para administrar
hilos y la memoria, lo que permite aprovechar el rendimiento de las GPUs en tareas pa-
ralelas. Tomando el ejemplo de CURC [39], el cual es un compresor de datos genómicos
utilizando la GPY y CPU de forma heterogénea. CURC logra una compresión mayor que
las herramientas tradicionales basadas exclusivamente en CPUs, como SPRING, debido a
su capacidad para manejar tareas masivas de forma paralela con mayor velocidad y menor
costo computacional. CURC ofrece una velocidad de compresión entre 2.76 y 6.54 veces
mayor, y una velocidad de descompresión hasta 2.52 veces superior en comparación con
otras herramientas tradicionales, sin sacrificar la tasa de compresión. Además, el sistema se
puede escalar para soportar múltiples GPUs, pero tener en cuenta que deben de alinearse
con la infraestructura que proporciona NVIDIA. Sin embargo, a pesar de estas ventajas,
la dependencia en cuanto a CUDA y NVIDIA plantea varios problemas. La limitación más
seria es la confianza total en una única compañía para el soporte de hardware, actualizacio-
nes y todas las herramientas necesarias para el desarrollo. Este punto conllevará problemas
si NVIDIA decide que el hardware utilizado se considera obsoleto o si la compañía toma
decisiones que puedan afectar la continuidad de soporte o la disponibilidad del hardware.
Así como el hecho de que el software solo puede ser accedido por las GPUs de NVIDIA con
soporte de CUDA y únicamente la versión funcional y soportada para la GPU utilizada.

Por último, es importante señalar que CUDA es una tecnología propietaria, lo que
excluye su uso en entornos que no pueden soportarla y dificulta la portabilidad hacia otras
plataformas. Este factor puede limitar las opciones de expansión futura y restringir la
flexibilidad del proyecto.

Se diseñará en lo posible el algoritmo en hardware, ya que brinda la oportunidad de que
sea dedicado para una sola tarea, comprimir o descomprimir, dando pie a obtener mejores
resultados que los ofrecidos solo por software. Involucrando la optimización de la arqui-
tectura mediante matrices sistólicas, se busca afrontar el problema generado por el ancho
de banda limitado y las capacidades limitadas que se tienen en los dispositivos móviles en
la actualidad, siendo un sustento para contribuir a un futuro de desarrollo sin depender
de tecnología de alguna compañía o técnica patentada. Involucrando al hardware, existen
varios proyectos con orientación a utilizarlo para distintos fines en reemplazo de soluciones
vía software, uno de los ellos [40], busca implementar Deflate en hardware, específicamente

CAPÍTULO 1. INTRODUCCIÓN 12

en un FPGA, presentando algunos aspectos de su implementación de hardware para los
codificadores LZ77 y Huffman, componentes clave del algoritmo Deflate. Con trabajo a
futuro de una posible integración en sistemas de almacenamiento y comunicación de da-
tos. Uno de los aspectos clave del algoritmo Deflate, es que brinda la opción de utilizar
codificadores estáticos o dinámicos; estos últimos calculan las frecuencias en función de
los datos de entrada; aquí es donde la mayoría de la literatura enfocada en soluciones vía
hardware no cumplen con los requisitos para Deflate, ya que se ocupan solo de diseñar
diccionarios estáticos. Con ello ofrece espacio para el presente trabajo y su incursión con
diccionarios dinámicos. Orientado el desarrollo de hardware en la arquitectura utilizada,
se puede buscar implementar el algoritmo Deflate de forma directa, pero esto no aprove-
charía en lo posible los recursos que ofrece el FPGA, en [41] se analiza la implementación
de hardware del algoritmo de compresión de datos Lempel-Ziv (LZ), enfatizando su im-
portancia en las comunicaciones y el almacenamiento de datos de alta velocidad. Explora
varias arquitecturas de hardware de compresión LZ, como la memoria direccionable de
contenido (CAM), la matriz sistólica, y compara su eficiencia en términos de velocidad,
costo de hardware y capacidad. Se introduce una nueva técnica paralela basada en matrices
sistólicas para implementar el algoritmo LZ centrada en mejorar la latencia y la eficiencia.
Además, incluye un análisis del efecto de la longitud del buffer de entrada en la relación
de compresión y presenta una implementación FPGA de la técnica propuesta para la com-
presión y descompresión sobre la marcha. La implementación propuesta se describe como
eficiente en área y velocidad. Da información sobre cómo seleccionar la longitud del búfer
para una relación de compresión óptima, mostrando las implicaciones de la relación entre
la longitud del búfer y la eficiencia de la compresión. Parte importante para este trabajo
es que realiza una comparación de diseños de matrices sistólicas, ofreciendo los resultados
de la implementación del diseño utilizando un FPGA de XILINX, lo que demuestra el
potencial de mejoras significativas en la tasa de compresión y la eficiencia. Así como existe
desarrollo en compresión vía software por parte de grandes compañías como Google, tam-
bién se tiene interesen soluciones por hardware. Debido a que la compresión es algo esencial
en la búsqueda del manejo de datos, considerando los niveles de generación de datos que
se tiene actualmente. Existe documentación de un proyecto de 2019 [28], donde están in-
volucrados diversas compañías como Intel, AMD, ARM, Broadcom, cadence, synopsys,
entre otros. Creando una alianza para desarrollar un algoritmo de compresión, teniendo
en cuenta la optimización y su implementación en hardware para los tipos de datos comu-
nes en las cargas de trabajo de almacenamiento en la nube. Al introducir innovaciones a
nivel de sistema, mencionan haber logrado alcanzar mayores niveles de compresión, mejor
rendimiento y menor latencia en comparación con los algoritmos existentes. Microsoft es
la principal compañía involucrada, la cual nombra al proyecto “Microsoft’s Project Zipli-
ne” y hace mención que los resultados tienen un nivel de compresión hasta 2 mayor en
comparación con el modelo Zlib-L4 de 64 KB comúnmente utilizado. Mejoras como esta
pueden generar beneficios directos en la administración de datos, tanto para las empresas
como para los usuarios finales, teniendo un potencial ahorro de costos. Microsoft menciona
que tiene un repositorio público, donde se puede tener acceso a especificaciones de diseño
de hardware y código fuente de Verilog para lenguaje de transferencia de registros (RTL),
donde literalmente mencionan “con contenido inicial disponible hoy y más próximamente”.
Caso que lamentablemente desde esa primera y única publicación en 2019, no se tiene

CAPÍTULO 1. INTRODUCCIÓN 13

más información actualizada del proyecto. Lo cual hace pensar en que el proyecto en la
actualidad pudo haber pasado por, su abandono, debido a la alta especialización su priva-
tización de este, entre otras posibles opciones. Dando pie a una interesante propuesta, que,
en lo posible, dado el alcance del presente trabajo y los recursos disponibles, se toma en
consideración los proyectos relacionados que en la actualidad otros investigadores realizan
en torno a la compresión y la utilización de hardware en dicha tarea.

1.6.1. Compresión en dispositivos móviles

[42] Históricamente se ha tenido interés en desarrollar dispositivos móviles con interfaces
inalámbricas que provean comunicación incluso mientras el usuario se mueve entre diversas
ubicaciones, en otras palabras, el desarrollo de dispositivos que eliminen las restricciones
de tiempo y espacio impuestas por las computadoras de escritorio y las redes cableadas.
Donde la computación móvil a transformado la forma en que se tiene acceso continuo a
servicios y recursos de redes terrestres. El desarrollo de estos dispositivos debe tener en
cuenta aspectos como las comunicaciones inalámbricas, la movilidad y la portabilidad. El
primer apartado, permite la conexión sin cables, pero enfrenta problemas como la latencia,
desconexiones frecuentes y una menor capacidad de ancho de banda en comparación con
las redes cableadas. En entornos donde se tenga que depender de dispositivos móviles las
desconexiones son comunes debido a la interferencia, que a su vez hace variar el ancho
de banda y que se generen complicaciones adicionales, por lo que se necesitan estrategias
que puedan adaptarse a estas limitaciones. Considerando la portabilidad, el diseño de dis-
positivos móviles conlleva restricciones significativas en cuanto al tamaño, peso, consumo
de energía y capacidad de almacenamiento. Minimizar el consumo de energía es crucial
para prolongar la vida útil de la batería, mientras que la capacidad de almacenamiento
limitada obliga a emplear soluciones como la compresión de archivos y el acceso remoto
a datos. aunque la computación móvil ofrece la posibilidad de eliminar las restricciones
de tiempo y lugar impuestas por los sistemas tradicionales, plantea desafíos únicos que
requieren adaptar las estructuras y sistemas actuales para soportar esta nueva realidad.
El uso masivo de dispositivos móviles con funciones avanzadas fue iniciado, entre otros,
con los asistentes digitales (PDA por sus siglas en ingles), concebidos como dispositivos
autocontenidos que eran parte mediante una red móvil de una infraestructura de cómputo
mayor. Uno de sus enfoques era permitir el acceso continuo a servicios y recursos, esta
combinación de movilidad y redes inalámbricas sentó las bases para nuevas aplicaciones y
formas de interactuar, que incluso en fechas recientes tienen gran relevancia en variedad
de áreas, gracias a diferentes dispositivos creados bajo los mismos principios, como los
teléfonos inteligentes, dispositivos de Internet, tarjetas inteligentes, computadoras corpo-
rales, sensores de redes, etc... [43] La evolución tecnológica ha impulsado el desarrollo de
procesadores más complejos, con un enfoque en la comunicación, rendimiento y bajo con-
sumo de energía. En sus inicios, los teléfonos móviles de la primera generación (1G) usaban
transmisión analógica, que requería más energía y admitía pocos usuarios. Con la llegada
de la segunda generación (2G), se adoptaron los procesadores de señal digital (DSP), que
proporcionaban una arquitectura flexible y rentable. A medida que avanzó la tecnología,
arquitecturas más modernas como los procesadores VLIW y SIMD permitieron un me-
jor rendimiento y menor consumo de energía. Convirtiendo a los dispositivos móviles en

CAPÍTULO 1. INTRODUCCIÓN 14

componentes vitales de la vida diaria, evolucionando a través de los años con cambios sig-
nificativos en la arquitectura del procesador. Los procesadores modernos como los basados
en ARM son fundamentales para los dispositivos móviles debido a su bajo consumo y alto
rendimiento. La tendencia actual es hacia sistemas en chip (Soc.) altamente integrados, que
combinan múltiples componentes, como CPU, GPU y DSP, en un solo chip para mejorar
el rendimiento general y la eficiencia energética. En la actualidad se utilizan en diversos
dispositivos móviles procesadores como los ARM Cortex, Qualcomm Snapdragon y Nvidia
Tegra, cada uno con su enfoque particular en la eficiencia energética, rendimiento gráfico
y capacidad de procesamiento con la meta de optimizarse para dispositivos que demandan
más potencia y mayor eficiencia energética. Considerando el avance en la tecnología, se han
realizado investigaciones en el campo, de las cuales algunas tienen mayor relevancia para el
presente trabajo, a continuación, se presentan brevemente. En [44] se propone una arqui-
tectura de compresión de código diseñada para mejorar el rendimiento de los procesadores
embebidos ARM/THUMB. El trabajo propone una arquitectura que reduce el tamaño del
código y mejora el rendimiento en general del sistema. Los autores mencionan que así se
puede disminuir el tamaño de la información almacenada en la memoria caché y con ello,
también minimizar los accesos a memoria. Buscan mantener el equilibrio entre la reducción
del código y la carga que se debe agregar por la acción de descomprimir, buscando que el
rendimiento del sistema se vea sin afectaciones de consideración. Ofreciendo una solución
eficaz para mejorar el rendimiento de los procesadores embebidos a través de la compre-
sión de código. El artículo [45] describe una técnica para reducir el consumo de energía
en sistemas híbridos de ARM-FPGA para comprimir datos sin pérdida. Buscan optimizar
el uso de la memoria. Al aplicar algoritmos de compresión, los autores logran reducir el
tráfico de datos entre la FPGA y la memoria externa, generando un ahorro de energía
sin comprometer la integridad de los datos. El artículo también compara este método con
otras técnicas y destaca sus ventajas en aplicaciones donde el consumo de energía es un
factor crítico, como en dispositivos portátiles y sistemas embebidos. Demostrando que la
compresión de datos sin pérdida aplicada a sistemas híbridos ARM-FPGA es una solución
viable para disminuir el consumo de energía, manteniendo la eficiencia y el rendimiento
en estos sistemas avanzados. En [46] se describe el diseño y funcionamiento de Flywheel,
un proxy de compresión de datos desarrollado por Google para mejorar la navegación web
móvil. Proponen reducir el consumo de datos y mejorar los tiempos de carga, siendo de
especial interés para contrarrestar los efectos de las redes lentas o inestables. El sistema
intercepta el tráfico web del usuario y comprime el contenido utilizando los servidores de
Google y de ahí los envía comprimidos al dispositivo del usuario. El artículo menciona los
problemas técnicos que tuvieron los autores, como mantener la compatibilidad con sitios
web dinámicos y cifrados, así como la necesidad de equilibrar la compresión con la la-
tencia adicional introducida por el uso del proxy. Mostrando también el impacto positivo
del sistema en la experiencia del usuario, al reducir considerablemente el uso de datos y
mejorar el rendimiento. Por su parte [47] se centra en cómo mejorar la eficiencia energética
de las aplicaciones que utilizan procesamiento paralelo en arquitecturas móviles heterogé-
neas. Estas plataformas incluyen diferentes tipos de procesadores, como CPUs y GPUs,
que son adecuados para manejar diferentes cargas de trabajo, lo que plantea un desafío en
la gestión eficiente de los recursos y el consumo energético. El enfoque del artículo está en
maximizar la eficiencia energética sin comprometer el rendimiento de las aplicaciones. Para

CAPÍTULO 1. INTRODUCCIÓN 15

lograr esto, los autores proponen un marco que evalúa las características de las aplicacio-
nes y selecciona dinámicamente el procesador más adecuado (CPU o GPU) para ejecutar
ciertas tareas, teniendo en cuenta factores como el tipo de aplicación y el estado actual
del sistema. Uno de los principales puntos es que, al distribuir inteligentemente las tareas
entre los distintos procesadores y ajustar el nivel de paralelismo, se puede reducir significa-
tivamente el consumo de energía en dispositivos móviles. Este enfoque permite aprovechar
al máximo las ventajas de los procesadores heterogéneos al mismo tiempo que se prolonga
la vida útil de la batería, un factor clave para los dispositivos móviles. Demostrando a
través de experimentos que este método optimiza tanto el rendimiento como el consumo
de energía en comparación con las estrategias tradicionales de ejecución de aplicaciones
paralelas. El artículo [48] aborda la necesidad de optimizar la transmisión de datos GPS
en dispositivos móviles y del Internet de las Cosas (IoT). Dado que estos dispositivos sue-
len tener limitaciones de ancho de banda y energía, el procesamiento de datos en el borde
(edge computing) se vuelve crucial para reducir la cantidad de datos que se envían a través
de la red. Los autores proponen un método de compresión de datos GPS directamente en
el dispositivo (en el borde) antes de transmitirlos, lo que reduce significativamente la can-
tidad de datos sin perder precisión relevante para aplicaciones IoT. El enfoque se basa en
algoritmos de compresión que detectan patrones y redundancias en las coordenadas GPS,
permitiendo comprimir la información de manera eficiente y, al mismo tiempo, conservando
los aspectos críticos de los datos necesarios para la toma de decisiones. Además, el artículo
analiza cómo esta compresión mejora la eficiencia energética de los dispositivos móviles,
ya que se requiere menos procesamiento en la nube y se minimizan las transmisiones de
datos. Este método de compresión es especialmente útil para aplicaciones que implican un
gran número de dispositivos IoT, como el seguimiento de vehículos o la gestión de flotas,
donde los volúmenes de datos pueden ser enormes. Los autores destacan que su propuesta
de compresión de datos GPS para IoT en el borde tiene un impacto positivo tanto en el
rendimiento del sistema como en la sostenibilidad de las soluciones IoT, al disminuir el uso
de energía y ancho de banda en redes móviles.

Capítulo 2

Marco teórico

La compresión de los datos es un componente importante de la vida moderna; permite
representar la información con una menor cantidad de recursos empleados, ya que optimiza
el uso del almacenamiento y de transmisión. Esta técnica es muy importante para dismi-
nuir el tráfico de datos. Ejemplos de ello pueden ser las plataformas de streaming como
Netflix o Spotify, que utilizan algoritmos de compresión con pérdida para que el conteni-
do multimedia, si se transmitiera en la calidad original en que se generaron, consumiría
aún más ancho de banda; el contenido comprimido puede reproducirse a diferentes velo-
cidades que se encuentran disponibles en la transmisión. En la aplicación de mensajería
WhatsApp, se utiliza una compresión sin pérdida para enviar imágenes que no pierden su
calidad con la compresión. En el aspecto técnico, la compresión de datos puede dividirse
en dos categorías grandes: con pérdida y sin pérdida. La primera es utilizada en contenido
multimedia, ya que elimina detalles menos perceptibles para los usuarios; como se observa
en el formato MP3 o en los videos comprimidos con H.264. Por otro lado, la compresión
sin pérdida, como la implementada en archivos ZIP, logra que sea recuperada la informa-
ción original, siendo esencial en aplicaciones que manejan documentos importantes como
reportes médicos o archivos legales. En la tabla 2.1 se presentan las características de los
dos tipos de compresión.

Tabla 2.1: Comparación entre compresión sin pérdida y con pérdida, elaboración propia.
Aspecto Compresión sin pérdida Compresión con pérdida

Propósito Preservar los datos origina-
les sin alteraciones [49]

Reducir significativamente
el tamaño a costa de perder
información [50]

Aplicaciones Textos, datos científicos, ba-
ses de datos [51]

Imágenes, audio, video [52]

Eficiencia de Compre-
sión

Baja a moderada [53] Alta [52]

Calidad de los Datos
Recuperados

Exactamente igual a los ori-
ginales [49]

Puede diferir significativa-
mente de los originales de-
pendiendo del nivel de com-
presión [50]

Complejidad de los
Algoritmos

Moderada [51] Alta [52]

16

CAPÍTULO 2. MARCO TEÓRICO 17

En la actualidad se siguen desarrollando nuevas propuestas, un ejemplo de ello es
utilizar las redes neuronales para compresión con pérdida, en [54] usan modelos de auto-
codificadores variacionales, donde muestran su efectividad optimizando el tamaño de los
datos resultantes. Sin embargo, los métodos clásicos como la codificación Huffman o la
codificación aritmética aún son utilizados debido a su simplicidad y eficiencia en casos de
recursos computacionales limitados. Así, la compresión de datos es utilizada en una varie-
dad de aplicaciones de la vida cotidiana, desde el entretenimiento y comunicación hasta la
infraestructura que soporta las aplicaciones y servicios. La constante evolución de métodos
de compresión, impulsada por las necesidades del usuario junto a los avances en el diseño
de algoritmos y hardware, dan evidencia que seguirá siendo relevante el trabajo propuesto.
A continuación, se dará una breve descripción de los principales fundamentos matemáticos,
teorías y técnicas que se consideraron para comprender y desarrollar el trabajo actual.

2.1. Fundamentos matemáticos
La compresión de datos sin pérdida es una técnica utilizada para reducir el tamaño

de los datos sin dañar la información. Para comprender como se implementa, así como
entender las razones por las cuales funciona, es importante comprender los conceptos en
los que se basa. Se presentan los fundamentos clave involucrados en la compresión.

2.1.1. Teoría de la información

[55] La información es un concepto que se experimenta de manera intuitiva todo el
tiempo al recibir y enviar mensajes, ya sea al leer, ver o escuchar. A pesar de que definir
y medir matemáticamente suena muy abstracto, una de las teorías de la información,
desarrollada por Claude Shannon en la década de 1940, proporciona una base matemática
sólida para cuantificar la información.

Cuantificar la información implica medir el grado de incertidumbre que contiene un
mensaje. Esto se puede ilustrar con el lanzamiento de un dado de seis caras. Antes del
lanzamiento, hay seis posibles resultados y una incertidumbre sobre cuál será el resultado
final. Al realizar el lanzamiento, se elimina esta incertidumbre al observar un número
específico entre 1 y 6. La cantidad de información necesaria para identificar el resultado
puede medirse en bits, que representan preguntas binarias (de sí o no) necesarias para
distinguir entre todas las opciones posibles.

Por ejemplo, para identificar el resultado de un dado, se necesitan al menos tres bits,
ya que 23 = 8 cubre las seis posibles opciones. En términos generales, cuantificar la in-
formación de este modo implica determinar la cantidad mínima de bits requerida para
representar los resultados de un experimento, como un lanzamiento de dado, o cualquier
situación que pueda resolverse mediante respuestas binarias.

El uso del logaritmo es de suma importancia para medir la información. Calcula el
exponente necesario para alcanzar un número dado en una base específica. Por ejemplo,
para datos en formato decimal, se usa la base 10, mientras que, para datos binarios, se
utiliza la base 2. Así, la cantidad de símbolos necesarios para representar un número N
está relacionada con logbN , donde b es la base.

CAPÍTULO 2. MARCO TEÓRICO 18

Para determinar cuántos bits se necesitan para expresar un número dado, se puede
utilizar la siguiente relación, usando X como la cantidad de bits requeridos:

10k − 1 = 2X − 1 (2.1)

Aquí, 10k − 1 representa el mayor número decimal de k dígitos, mientras que 2X − 1
corresponde al mayor número binario con X bits. Usando logaritmos, se puede resolver
para X:

X = k
log10
log2

(2.2)

Al elegir la base 2, el cálculo se simplifica:

X = k log2 10 ≈ 3.32k (2.3)

Esto muestra que un dígito decimal contiene aproximadamente 3.32 bits de información.
De manera general, para un sistema con base n, la relación es:

X = k log2 n (2.4)

Esto indica que la información contenida en un dígito de base n es equivalente a log2 n
bits.

En escenarios prácticos, como transmisores que envían datos, el número de símbolos
por unidad de tiempo, denotado por s, y la base de los símbolos, n, determinan la cantidad
de información transmitida, H:

H = s log2 n (2.5)

Si los símbolos tienen diferentes probabilidades de ocurrencia, la cantidad promedio de
información, o entropía, se calcula considerando estas probabilidades. Para n símbolos con
probabilidades Pi, donde la suma de todas las probabilidades es igual a 1:∑

Pi = nP (2.6)

Esto lleva a expresar H como:

H = −s

n∑
1

Pilog2Pi (2.7)

Aquí, H mide la información promedio transmitida por unidad de tiempo. La entropía por
símbolo, E, se define como:

E = −
n∑
1

Pilog2Pi (2.8)

Esto indica que E representa la cantidad mínima promedio de bits necesarios para codificar
un símbolo.

Cuando todas las probabilidades son iguales, la entropía es máxima. Esto introduce el
concepto de redundancia R, que mide la diferencia entre la entropía máxima teórica y la
entropía observada:

R = log2 n+
n∑
1

Pilog2Pi (2.9)

CAPÍTULO 2. MARCO TEÓRICO 19

En datos completamente comprimidos, donde no hay redundancia:

log2 n+
n∑
1

Pilog1Pi = 0 (2.10)

Estos principios demuestran cómo la teoría de la información establece la base matemática
para cuantificar, medir y optimizar la transmisión eficiente de datos en una amplia variedad
de aplicaciones cotidianas y tecnológicas.

2.1.2. Códigos prefijos

Existen diversas técnicas que se basan en la codificación de entropía, una de las más
conocidas son los códigos Huffman, ya que son competitivamente óptimos y requieren apro-
ximadamente H lanzamientos de dado justos para generar una muestra de una variable
aleatoria que tenga entropía H. Ya que, la entropía es el límite de compresión de datos,
así como el número de bits necesarios en la generación de números aleatorios. Los códi-
gos Huffman resultan óptimos desde muchos puntos de vista, ya que las secuencias cortas
representan letras frecuentes y las secuencias largas representan letras poco frecuentes. Bá-
sicamente, intenta reducir la redundancia presente en los datos de entrada y representarlos
con menos bits. El algoritmo de codificación Huffman forma parte de los códigos prefijos
o códigos Huffman. Para sustentar que los códigos prefijos funcionan en compresión y son
óptimos, se deben definir condiciones estrictas en los códigos. Si Xn denota (x1, x2, . . . , xn).
Considerando la definición: Un código es no singular si cada elemento del rango de X se
asigna a una cadena diferente en D∗; es decir:

x ̸= x′ → C (x) ̸= C (x′) (2.11)

La no singularidad es suficiente para una descripción sin ambigüedad de un único valor de
X, aunque normalmente se desea enviar una secuencia de valores de X. Por ello se requiere
tener una extensión de la definición anterior. Definición: La extensión C∗ de un código C
es el mapeo de cadenas de longitud finita de X a cadenas de longitud finita de D, definidas
por:

C (X1X2 . . . Xn) = C (x1)C (x2) . . . C (Xn) (2.12)

donde C (x1)C (x2) . . . C (xn) indica la concatenación de las palabras de los códigos co-
rrespondientes. Con base en ello, la tercera definición es: Un código es llamado únicamente
decodificable si su extensión es no singular. Lo cual significa que cualquier cadena codi-
ficada en un código únicamente decodificable tiene solo una posible cadena fuente que
la produce. Sin embargo, es posible que sea necesario observar la cadena completa para
determinar incluso el primer símbolo en la cadena fuente correspondiente. Definiendo final-
mente que un código es llamado código prefijo o código instantáneo si ninguna palabra de
código es un prefijo de ninguna otra palabra de código. Siendo que un código instantáneo
se puede decodificar sin referencia a palabras clave futuras, ya que el final de una palabra
clave es inmediatamente reconocible. Por tanto, para un código instantáneo, el símbolo X
se puede decodificar tan pronto como se llega al final de la palabra clave correspondiente.
En otras palabras, un código instantáneo es un código que se puntúa a sí mismo.

CAPÍTULO 2. MARCO TEÓRICO 20

2.1.3. Métodos estadísticos

La realización de métodos estadísticos o de codificación de la entropía tiene sus funda-
mentos en la teoría de la información, que fue descrita públicamente por primera vez por
Claude Shannon en 1948. Los métodos estadísticos utilizan códigos de longitud variable,
ya que asignan códigos más cortos a los símbolos que son más frecuentes, utilizando mé-
todos de tamaño variable. La consecuencia de ello es que tanto los diseñadores como los
implementadores deben tener en cuenta, que se debe asignar códigos que puedan ser fácil-
mente interpretados sin ambigüedad y se debe asignar códigos con el tamaño mínimo en
promedio. De acuerdo con [55] Claude Shannon proporciona la explicación de la entropía.
Basada en un conjunto de probabilidades y una fuente de información. Esta entropía, en
el contexto de la teoría de la información, representa el promedio de la cantidad de bits
necesarios para codificar la salida de dicha fuente. En esencia, la entropía de una fuente de
información cuantifica la incertidumbre asociada con sus salidas posibles. Shannon demos-
tró que la cantidad mínima promedio de bits requerida para codificar la salida de manera
óptima está determinada por la entropía de la fuente. Esto significa que ningún compresor
sin pérdidas puede superar la eficiencia de codificación que lograría utilizando un número
promedio de bits equivalente a la entropía de la fuente. En resumen, la entropía no solo
proporciona una medida cuantitativa de la información contenida en una fuente, sino que
también establece un límite teórico superior para la eficiencia de cualquier compresión sin
pérdidas que intente codificar la salida de dicha fuente.

Codificación Shannon-Fano

Existe un trabajo similar al descrito por Shannon, que fue hecho de forma indepen-
diente por Robert Fano y publicado en [56]. El método de codificación conocido como
Shannon-Fano aparece en los dos trabajos y es parte esencial de la mejora en los códigos
de longitud variable existentes. Este método reúne técnicas para crear códigos de longitud
variable que minimizan la cantidad promedio de bits necesarios para cada símbolo. Al
analizar las probabilidades de cada símbolo, el algoritmo asigna códigos de manera que
los símbolos más comunes tengan códigos más cortos, mientras que los menos comunes
tienen códigos más largos. Estos códigos son únicos y forman un código de prefijo, lo que
significa que ningún código es prefijo de otro, garantizando así su decodificación correc-
ta. La validación suficiente de esta afirmación se aborda en el anexo del documento. El
algoritmo funciona ordenando los símbolos según su probabilidad y dividiéndolos en dos
grupos con probabilidades totales casi iguales. A los símbolos de un grupo se les asigna
un código que comienza con 0 y a los del otro grupo un código que empieza con 1. Luego,
cada grupo se subdivide repetidamente de la misma manera, asignando bits adicionales
según la probabilidad, hasta que no queden más subdivisiones. Sin embargo, aunque este
método permite interpretar los mensajes claramente, no siempre garantiza la codificación
más eficiente, lo que limita su efectividad.

CAPÍTULO 2. MARCO TEÓRICO 21

Ejemplo: Codificación Shannon-Fano

Se tienen los símbolos A, B, C y D con las siguientes probabilidades asociadas:

Símbolo Probabilidad
A 0.4
B 0.3
C 0.2
D 0.1

El algoritmo Shannon-Fano funciona de la siguiente manera:

1. Ordena los símbolos según su probabilidad en orden descendente: A, B, C, D.

2. Divide los símbolos en dos grupos de probabilidades lo más equilibradas posible:

Grupo Probabilidad
A,B 0.7
C,D 0.3

3. Se asigna el bit 0 al primer grupo y el bit 1 al segundo grupo.

4. Subdivide cada grupo de manera recursiva:

En el grupo 1 (A,B), se asigna 0 a A y 1 a B.

En el grupo 2 (C,D), se asigna 0 a C y 1 a D.

5. Esto produce las siguientes codificaciones:

Símbolo Código Shannon-Fano Probabilidad
A 00 0.4
B 01 0.3
C 10 0.2
D 11 0.1

Como resultado, los símbolos con mayor probabilidad tienen códigos más cortos, lo que
disminuye la cantidad de bits necesarios para la codificación. Dibujando el árbol de la
manera habitual en teoría de grafos, con la raíz arriba y las hojas abajo, es más fácil de
observar el resultado, en la figura siguiente se ilustra el árbol de codificación para este
ejemplo:

Método Huffman

La codificación Huffman utiliza árboles binarios para asignar códigos más cortos a los
símbolos con mayor frecuencia de aparición. Es particularmente eficaz cuando las distri-
buciones de probabilidad son desiguales, como en archivos de texto con caracteres de uso
común. Aunque garantiza una compresión óptima para un solo símbolo, no aprovecha pa-
trones repetidos entre ellos, limitando su eficacia en algunos casos. Un ejemplo práctico es

CAPÍTULO 2. MARCO TEÓRICO 22

1

0.7

A(0.4) B(0.3)

0.3

C(0.2) D(0.1)

0

0 1

1

0 1

Figura 2.1: Árbol de codificación Shannon-Fano, elaboración propia.

su integración en la compresión de texto en archivos ZIP [57]. Esta codificación es similar
a la codificación Shannon-Fano, la principal diferencia recae en que se ha demostrado que
Huffman siempre produce la codificación de prefijo óptima, mientras que Shannon-Fano en
algunas situaciones puede ser ligeramente menos eficiente. Este método se consideró ini-
cialmente para formar parte del diseño, pero se optó por crear una arquitectura basada en
teorías de los algoritmos y no limitar el trabajo a solo copiar e implementar un algoritmo.

2.2. Métodos de diccionario
En la compresión basada en diccionarios, se seleccionan secuencias de símbolos que

luego se codifican como tokens utilizando un diccionario predefinido. La eficacia de la
compresión depende de la calidad de este modelo. Este diccionario puede ser estático o
dinámico: el primero es inmutable y ocasionalmente permite la adición, pero no la elimina-
ción de secuencias, mientras que el segundo se ajusta continuamente según las secuencias
encontradas en la corriente de datos, facilitando tanto la adición como la eliminación de
entradas a medida que se procesan nuevos datos. En términos simples, un compresor ba-
sado en diccionario busca patrones repetitivos en la cadena de texto. Cuando encuentra
estos patrones, los sustituye por códigos más cortos, lo que reduce el tamaño del archivo
original. Idealmente, puede comprimir una cadena de n símbolos hasta aproximadamente
nH bits. La letra H representa la entropía, en este caso del conjunto n de símbolos. La
entropía, en este contexto, es una medida de la incertidumbre o la información promedio
por símbolo en la cadena. Es importante mencionar que los compresores basados en diccio-
nario se comportan como codificadores de entropía, son más eficientes cuando comprimen
archivos grandes. Para aplicaciones prácticas, como la compresión de archivos comunes
como texto, imágenes o datos de audio, estos compresores en general ofrecen resultados
dentro de los parámetros adecuados, por lo tanto, gracias a su sencillez de funcionamiento
y resultados son muy utilizados. Algunos de los algoritmos más conocidos de este tipo, son
los basados en LZ, los cuales se revisaron para el presente trabajo; teniendo en cuenta su
objetivo, ventajas y desventajas, se presentan brevemente los más relevantes.

CAPÍTULO 2. MARCO TEÓRICO 23

2.2.1. Algoritmos de codificación LZ

Existen diversos algoritmos de compresión basados en diccionarios, entre ellos, los de-
rivados del trabajo propuesto en 1977 por Jacob Ziv y Abraham Lempel, con los que se
inició una nueva rama en compresión [11]. El fundamento de estos métodos consiste en
utilizar una porción del texto procesado y crear un diccionario dinámico con esos datos.
El compresor utiliza una memoria intermedia, o "buffer", denominada "ventana deslizan-
te"para la cadena de entrada. Esta ventana, por lo general, desplaza los datos de derecha a
izquierda conforme se codifican los símbolos, permitiendo así la identificación de patrones
recurrentes en la entrada.

Método LZ77

El método LZ77 se basa en la utilización de una ventana deslizante para identificar pa-
trones repetidos dentro de los datos. Este enfoque permite reemplazar secuencias repetidas
con referencias a su posición y longitud dentro de un buffer. Es ampliamente utilizado en
formatos como ZIP y GZIP debido a su capacidad para manejar datos con redundancia
local significativa. Sin embargo, requiere un buffer de búsqueda y puede volverse ineficiente
cuando los patrones repetidos están muy espaciados. Por ejemplo, en el caso de archivos
de texto con frases recurrentes, LZ77 logra una compresión eficiente [58], más adelante se
aborda a detalle este método, ya que se eligió para ser la base de la arquitectura diseñada.

Método LZ78

El método LZ78, una extensión del LZ77, construye un diccionario dinámico de patro-
nes observados, asignando un índice único a cada nueva secuencia detectada. Esta técnica
es útil para datos con redundancia global, como documentos extensos con múltiples ocu-
rrencias de términos específicos. Una de sus principales ventajas es la eliminación de la
necesidad de un buffer de búsqueda continuo, pero introduce la sobrecarga de administrar
el diccionario. Un caso práctico es su uso en el algoritmo GIF para comprimir imágenes
de baja complejidad [59], cabe resaltar que LZ78 no se consideró adecuado, debido a su
patente que data de 1984 y permanece activa hasta el 2028 [60].

Método Deflate

Deflate combina LZ77 y codificación Huffman para lograr una alta eficiencia en la com-
presión. Este método primero identifica patrones repetidos con LZ77 y luego codifica las
secuencias resultantes utilizando un esquema Huffman, que asigna códigos más cortos a los
patrones frecuentes. Es empleado en formatos como PNG, donde la pérdida de informa-
ción es inaceptable. Aunque ofrece una alta tasa de compresión, su implementación es más
compleja y requiere un mayor poder computacional [61]. Al igual que el método anterior,
se tuvo la oportunidad de revisar a detalle el funcionamiento y se observó que se perdía el
objetivo de estudio al remitir el trabajo solo a replicar un algoritmo.

CAPÍTULO 2. MARCO TEÓRICO 24

Método Codificación Aritmética

El último método presentado es la codificación aritmética, la cual asigna rangos de
probabilidad a secuencias de símbolos, representando todo un mensaje con un único nú-
mero dentro del rango acumulativo. Este método ofrece una compresión más cercana al
límite teórico de Shannon que Huffman, especialmente para datos con símbolos altamente
correlacionados. Sin embargo, su implementación es más compleja y puede ser más lenta.
Es utilizada en estándares como H.264 para la compresión de video [62].

2.2.2. Un ejemplo de compresión

Teniendo en cuenta diversos formatos digitales del día a día, es evidente que en la
mayoría de ellos se realiza de una u otra forma algún tipo de compresión para almacenar
de forma eficiente la información, tomando de ejemplo el formato PDF (Portable Document
Format en inglés, ’formato de documento portátil’). La compresión de archivos PDF es
un proceso que combina diversos algoritmos de compresión para minimizar el tamaño del
archivo, manteniendo su contenido legible y funcional. Los métodos principales utilizados
en este formato son:

Compresión de imágenes: El formato PDF utiliza métodos de compresión tanto
con pérdida como sin pérdida, dependiendo de las configuraciones y el propósito del
archivo.

1. Compresión con pérdida (JPEG): Se utiliza para imágenes con escala de grises
o color, internamente en general se utilizan matrices para reducir el tamaño
eliminando detalles que se pueden considerar redundantes, depende de la con-
figuración se reduce en mayor o menor cantidad la calidad del resultado.

2. Compresión sin pérdida (Flate/PNG): Se basa en el algoritmo DEFLATE, pero
a diferencia de GIF, se elimina todo algoritmo que está protegido por una paten-
te, se comprime la imagen en formato monocromático o de gráficos vectoriales,
sin perder calidad en los datos [63, 64].

Codificación de texto: El texto en un PDF es generalmente codificado usando
Flate, mientras que el texto en general puede ser comprimido utilizando algoritmos
como JBIG2. Ya que permite el agrupamiento de caracteres similares para reducir
el almacenamiento sin comprometer significativamente la legibilidad [65, 66].

Estructura del documento: Los archivos PDF emplean un almacenamiento seg-
mentado para contenido estructurado. Esto incluye la compresión de los datos in-
dividuales, como objetos y referencias cruzadas. Además, de otras medidas para
disminuir las redundancias [67].

Compresión de metadatos y fuentes: Los metadatos y las fuentes utilizadas
en los archivos son comprimidas con Flate o eliminados parcialmente en algunas
configuraciones de compresión. Los subconjuntos de fuentes (subsetting) también
ayudan a reducir el tamaño, almacenando únicamente los caracteres utilizados en el
documento [68, 69].

CAPÍTULO 2. MARCO TEÓRICO 25

2.3. Computación en paralelo
En el diseño de arquitecturas de hardware se requiere un enfoque que tenga principal-

mente en cuenta los fundamentos matemáticos, teorías de compresión de datos y técnicas
especializadas de procesamiento en paralelo. Este último elemento, el paralelismo, se uti-
liza en este trabajo para buscar aprovechar los recursos disponibles para alcanzar un alto
rendimiento en la arquitectura. Se aborda brevemente el tema, considerando [70]. El pa-
ralelismo consiste en dividir una tarea en subtareas independientes que pueden ejecutarse
en simultáneo por diferentes elementos de procesamiento. Esta técnica disminuye el tiem-
po de ejecución, mejorando la escalabilidad y eficiencia energética de la arquitectura. Ya
que permitirá comparar múltiples cadenas al mismo tiempo, lo que acelera el proceso de
búsqueda y codificación.

2.3.1. Importancia del paralelismo

El paralelismo en la actualidad es un componente fundamental en la computación,
debido al estancamiento en el crecimiento de la frecuencia de reloj de los procesadores
tradicionales. En lugar de depender exclusivamente de procesadores más rápidos, las ar-
quitecturas actuales se apoyan en núcleos múltiples y aceleradores como las GPUs para
realizar tareas en paralelo. Por ejemplo, al realizar la edición de una imagen, el ajuste del
brillo en cada píxel puede llevarse a cabo en paralelo, procesando múltiples píxeles simultá-
neamente en lugar de uno por uno. Este enfoque ha demostrado ser crucial en aplicaciones
como compresión de datos en tiempo real, simulaciones físicas y procesamiento masivo de
información.

2.3.2. Tipos de paralelismo

Existen diferentes niveles de paralelismo que se pueden aprovechar en el diseño de
sistemas:

Paralelismo a nivel de datos (DLP): Procesa múltiples datos aplicando la misma
operación de manera simultánea. Esto es común en aplicaciones gráficas y algoritmos
de compresión, como la búsqueda de coincidencias en algoritmos LZ77.

Paralelismo a nivel de instrucciones (ILP): Permite reordenar y ejecutar varias
instrucciones de manera paralela dentro de un solo núcleo del procesador.

El paralelismo a nivel de solicitudes (RLP) se aplica en sistemas como servi-
dores web, donde múltiples peticiones de usuarios se procesan simultáneamente para
mejorar la respuesta y escalabilidad del sistema.

Paralelismo a nivel de tareas (TLP): Distribuye tareas independientes entre
diferentes núcleos de procesamiento, lo que resulta esencial en sistemas multiproce-
sador.

CAPÍTULO 2. MARCO TEÓRICO 26

2.3.3. Ventajas y retos

Uno de los beneficios más evidentes de la computación en paralelo es la reducción de
tiempo de ejecución, esto es beneficioso en aplicaciones que pueden dividirse fácilmente
en subtareas independientes. Además, esta técnica permite manejar una mayor carga de
trabajo si se agregan recursos de hardware, lo que mejora la escalabilidad del sistema. Sin
embargo, al momento de diseñar arquitecturas en paralelo se deben tener en cuenta los
problemas que surgen con ello. Se deben sincronizar las subtareas para evitar inconsis-
tencias, en especial cuando comparten datos. También se debe considerar el balance de
la carga de trabajo entre las unidades de procesamiento, ya que una distribución dispar
puede limitar el rendimiento global del sistema. Adicionalmente, el diseño y desarrollo de
algoritmos paralelos suelen ser más complejos que sus contrapartes secuenciales.

2.3.4. Paralelismo y la taxonomía de Flynn

El paralelismo en computación se clasifica ampliamente según los modelos de ejecución
y las estructuras de procesamiento que utiliza. Una de las herramientas más reconocidas
para esta clasificación es la Taxonomía de Flynn, propuesta por Michael J. Flynn en
1966 [71]. Este modelo organiza las arquitecturas en cuatro categorías basadas en el número
de instrucciones y de datos que pueden procesar simultáneamente.

Categorías de la taxonomía de Flynn

1. SISD (Single Instruction, Single Data, en inglés): Representa la arquitectura
secuencial clásica, donde una única unidad de control ejecuta una instrucción sobre
un único flujo de datos en un momento dado. Ejemplo: Procesadores tradicionales
como los primeros Intel 8086.

2. SIMD (Single Instruction, Multiple Data, en inglés): Permite ejecutar una
misma instrucción simultáneamente sobre múltiples conjuntos de datos. Es ideal para
aplicaciones con gran paralelismo a nivel de datos, como procesamiento de imágenes
o gráficos. Ejemplo: GPUs modernas o extensiones como Intel AVX.

3. MISD (Multiple Instruction, Single Data, en inglés): Aunque rara vez imple-
mentada, esta categoría describe arquitecturas donde múltiples flujos de instrucciones
operan sobre un único flujo de datos. Se utiliza en casos especializados como sistemas
redundantes para tolerancia a fallos. Ejemplo: Los sistemas de control de un avión.

4. MIMD (Multiple Instruction, Multiple Data, en inglés): Soporta múltiples
flujos de instrucciones ejecutándose en paralelo sobre múltiples flujos de datos. Es
común en sistemas multiprocesador y clústeres. Ejemplo: Supercomputadoras y pro-
cesadores multinúcleo como los modernos Intel Xeon o AMD EPYC.

2.3.5. Importancia de la taxonomía de Flynn

Es una referencia que ayuda a clasificar de forma sencilla las arquitecturas de compu-
tadoras, puede ser de ayuda al diseñar arquitecturas en paralelo. Cada categoría define la

CAPÍTULO 2. MARCO TEÓRICO 27

forma en que se procesan los datos y como se hace y no es que alguna sea mejor que otra,
depende de la tarea que se pretende atacar para considerar una u otra técnica. Por ejemplo,
las arquitecturas SIMD son eficientes en problemas con gran homogeneidad en los datos,
mientras que MIMD es más flexible y capaz de manejar tareas heterogéneas en paralelo.
Considerando esta guía para el desarrollo de la arquitectura de compresión de datos, las
arquitecturas SIMD pueden ser de ayuda en operaciones repetitivas como la comparación
de cadenas, mientras que MIMD facilita la implementación de algoritmos complejos que
combinan múltiples etapas de procesamiento.

2.3.6. Aplicaciones relevantes

En la actualidad existen por doquier ejemplos que se pueden categorizar de acuerdo
con la taxonomía de Flynn:

En procesamiento gráfico, las GPUs utilizan en su mayoría un modelo SIMD para
realizar operaciones en simultáneo para el manejo de los pixeles.

Las supercomputadoras, basadas en MIMD, son utilizadas para simulaciones que
requieren procesar muchos datos, como modelos climáticos o análisis genómicos.

Los sistemas embebidos pueden implementar variantes de MISD para generar redun-
dancia en entornos críticos.

2.3.7. Aplicación en arquitecturas de compresión

En el contexto de las arquitecturas de compresión de datos, el paralelismo permite
optimizar operaciones críticas como la búsqueda de cadenas repetidas y la codificación
eficiente. Por ejemplo, mediante una matriz sistólica, es posible realizar comparaciones
de datos en paralelo, reduciendo significativamente la latencia del sistema. Esta técnica se
consideró particularmente relevante para implementar algoritmos como LZ77 en hardware.
Se aborda a detalle en la siguiente sección el entendimiento obtenido sobre el tema de
matrices sistólicas.

2.4. Matrices sistólicas en la arquitectura de hardware
Las matrices sistólicas son una de las estructuras de mayor relevancia en el diseño

de arquitecturas de hardware en paralelo, debido a su capacidad para realizar cálculos
complejos de manera eficiente mediante la sincronización entre múltiples elementos de
procesamiento. Este modelo, introducido por Kung y Leiserson en 1978 [1], combina la
división de los datos en pequeños segmentos y su procesamiento en paralelo, logrando
resolver problemas computacionales intensivos con la utilización de matrices. El término
"sistólico"proviene de la analogía con el sistema circulatorio, donde el flujo de datos a
través de los elementos de procesamiento se asemeja al flujo sanguíneo a través de las
arterias y venas. En una matriz sistólica, los datos fluyen de manera sincronizada entre
celdas vecinas en ciclos de reloj predefinidos. Cada elemento de procesamiento realiza una

CAPÍTULO 2. MARCO TEÓRICO 28

operación local sobre los datos que recibe, los actualiza y los reenvía a la siguiente celda,
siguiendo un patrón regular y predecible, en la siguiente figura se aprecia este esquema.

Figura 2.2: Diagrama de matriz sistólica, basado en [1].

Estas matrices ofrecen una ventaja significativa en términos de rendimiento, ya que
aprovechan el paralelismo ofrecido por el hardware. Por ejemplo, en el caso de la multi-
plicación de matrices, cada celda en la matriz sistólica puede calcular productos parciales
de manera simultánea, propagando los resultados hacia las celdas cercanas. Este enfoque
reduce la complejidad de control y minimiza la latencia, ya que todas las operaciones se
realizan de forma local en cada elemento de procesamiento y sincronizadas entre ellos.

Una analogía a las matrices sistólicas es la cadena de producción en una fábrica. En este
caso, cada estación realiza una operación específica sobre el producto, como ensamblaje,
pintura o embalaje, y luego lo pasa a la siguiente estación. Todas las estaciones trabajan
de manera simultánea, pero cada una tiene un trabajo independiente y sincronizado. De
manera similar, en una matriz sistólica, cada celda realiza cálculos específicos mientras
recibe y envía datos, maximizando la eficiencia del sistema.

Aplicadas a compresión de datos, las matrices sistólicas son útiles en la implementación
de algoritmos LZ, ya que las operaciones de búsqueda y comparación se pueden dividir
en procesos que se ejecuten en paralelo. Por ejemplo, en la propuesta basada en LZ77, se
utilizará la matriz sistólica para asignar a cada elemento de procesamiento la comparación
de una parte específica del texto con el diccionario, reduciendo drásticamente el tiempo
necesario para encontrar coincidencias si se realizara de forma secuencial.

Además, la eficiencia de las matrices sistólicas destaca por su sencillez en el diseño de
hardware. Al estar compuestas por elementos homogéneos con interconexiones regulares,
estas estructuras son fáciles de seguir en su implementación y también entendibles para su
escalamiento. Por esta razón, son ampliamente utilizadas en sistemas embebidos y disposi-
tivos de procesamiento de señales, como filtros digitales y codificadores de video, donde se
tiene limitado el espacio y energía. Las matrices sistólicas son una poderosa herramienta
para diseñar arquitecturas de hardware, ya que combinan eficiencia, paralelismo y mo-
dularidad. Su capacidad para resolver problemas computacionales intensivos de manera
simultánea hace que sean una opción ideal para aplicaciones como compresión de datos,
donde se deben realizar muchas comparaciones y búsquedas. Basarse en este enfoque en el

CAPÍTULO 2. MARCO TEÓRICO 29

desarrollo de la arquitectura, busca garantizar un alto rendimiento y un uso eficiente de
los recursos disponibles.

2.4.1. Método seleccionado

Se eligió el método de compresión tomando en cuenta tanto las ventajas como desven-
tajas de todo lo que rodea a los algoritmos estudiados, desde el tipo de datos en los que
se desempeñan mejor, la forma en que se pueden optimizar, hasta las restricciones que
se les imponen para su utilización. Considerando un modelo de acuerdo con la teoría de
ventana deslizante, ya que se puede implementar de forma eficiente en hardware y mejo-
rar su desempeño en la búsqueda de coincidencias sin necesidad de agregar complejidad
computacional que no haría una gran diferencia en los resultados obtenidos.

En específico, se decidió realizar el diseño basado en el algoritmo LZ77, por su desem-
peño comprobado y estudiado desde su publicación por Ziv y Lempel [72]. El uso de una
ventana deslizante en LZ77 permite encontrar coincidencias en cadenas de texto, logrando
una compresión eficiente. Sin embargo, una ventaja adicional que es clave en este trabajo
es la forma de procesar en paralelo los datos, haciendo uso de matrices sistólicas. Esta
implementación logra adaptar partes críticas del algoritmo al hardware y aprovecharlo de
forma eficiente. Disminuyendo el tiempo de compresión, ya que se busca y compara de
forma simultánea en varias partes del texto a la vez.

El diseño seleccionado también se puede adaptar a arquitecturas para diversas tareas
específicas. En casos donde el consumo energético es un factor que se debe considerar, la
arquitectura propuesta ofrece beneficios importantes. Investigaciones recientes respaldan
esta afirmación al demostrar que este enfoque puede disminuir el uso de memoria y tiempo
de transferencia de datos en dispositivos embebidos [73].

Al utilizar el paralelismo a nivel de datos (DLP) al ejecutar operaciones repetitivas de
manera simultánea, el método seleccionado no solo mejora el rendimiento, sino que también
permite aprovechar arquitecturas como SIMD, que son recomendadas para procesar datos
en paralelo en aplicaciones como la búsqueda de coincidencias dentro del algoritmo LZ77.
Esto confirma la viabilidad del modelo propuesto y las ventajas que presenta.

Capítulo 3

Análisis

Se consideró la metodología como parte de la estructura de este trabajo; se realizó
primero el desarrollo del modelo general, seguido de la construcción de la lista de funcio-
nalidades, aunque para ello se debe tener claro los aspectos que se deben analizar para la
construcción de la arquitectura. Se analiza el algoritmo en el que se basa la arquitectura,
así como el paralelismo y el hardware de pruebas utilizado. Todo ello para poder describir
una propuesta fundamentada y que sea factible de diseñar.

3.1. Algoritmo LZ77 a detalle
El algoritmo, conocido actualmente como LZ77 en honor a las iniciales de sus creadores,

emplea esta ventana deslizante como un diccionario que permite visualizar la entrada tal
como se está codificando. La ventana deslizante almacena los últimos n símbolos emitidos
por la fuente, facilitando la identificación de secuencias en la entrada que coinciden con
las presentes en la ventana deslizante. La ventana se conforma por el apartado izquier-
do, llamado buffer de búsqueda, que actúa como el diccionario actual, donde almacena
los últimos símbolos codificados. Por otro lado, la parte derecha es el buffer de lectura
anticipada, que contiene el texto que aún no se ha leído. A continuación, se muestra la
ventana deslizante sobre un texto de ejemplo. La línea vertical entre los símbolos "l" y
"o" representa la división entre los dos buffers. Los símbolos en la ventana izquierda ya
han sido comprimidos, mientras que el texto en la ventana derecha todavía necesita ser
procesado.

Figura 3.1: Ejemplo de ventana deslizante, elaboración propia.

El codificador revisa el buffer de búsqueda comenzando desde el final hacia el principio
(leyendo en orden inverso a los humanos) encontrando las coincidencias con el símbolo
actual en el buffer de lectura anticipada. Encuentra una coincidencia con la letra ’o’ de la
palabra "los". Esta ’o’ se encuentra a 7 posiciones de la primera ’o’. El siguiente paso es

30

CAPÍTULO 3. ANÁLISIS 31

buscar concordancias con la mayor cantidad posible de símbolos adyacentes a la derecha.
Al revisar el ejemplo, se verifica que coinciden tres caracteres "os_", siendo entonces la
longitud de 3. El compresor continúa leyendo el texto en orden inverso en búsqueda de
coincidencias. Utilizando la coincidencia más larga, en caso de que todas las coincidencias
tengan la misma longitud, se opta por la última de ellas, y con esa información prepara
el token. Escogiendo la última coincidencia se simplifica el proceso de descompresión, ya
que solo tiene que mantener la dirección de la última cadena encontrada, aunque a costa
de tener desplazamientos más largos. El token producido es en realidad una triada que se
crea al encontrar una coincidencia; los elementos de la triada son:

1. Desplazamiento en la ventana donde se encontró la coincidencia.

2. Longitud de la coincidencia.

3. El siguiente símbolo después de la frase actual.

Teniendo en cuenta los elementos que lo conforman, en el ejemplo anterior se obten-
dría el token (7, 3, y). La ausencia de una coincidencia da como resultado una triada de
(0, 0, C (s)), donde C (s) es la palabra clave para el símbolo S. Ya que la ventana tiene una
longitud finita, las repeticiones en la entrada con un periodo más grande que n no pueden
ser detectadas y comprimidas por LZ77. El diccionario LZ77 incluye todas las sub-cadenas
y símbolos individuales de una cadena dentro de una ventana deslizante. Esta técnica
ha evolucionado con variaciones que han dado lugar a los algoritmos de codificación LZ
(Lempel-Ziv). Estos algoritmos son herramientas fundamentales en la compresión de da-
tos, ya que permiten reducir el tamaño de archivos sin perder información, aprovechando
patrones recurrentes en los datos [74]. LZ77, LZSS, LZ78 y LZW son las variaciones más
comunes de los algoritmos de codificación LZ, Deflate por su parte, utiliza compresión
LZ77.

LZ77 procesa datos de izquierda a derecha, insertando cada cadena en el diccionario.
Por lo general, el diccionario está limitado por la memoria disponible, por lo que se utili-
za un diccionario deslizante. Un diccionario deslizante mantiene una lista de las cadenas
utilizadas más recientemente. Si cierta cadena no está en el buffer de búsqueda, esta se
toma como una secuencia literal de bytes. Si se encuentra una coincidencia, la cadena
se reemplaza por un puntero a la cadena coincidente en forma de par distancia-longitud.
El par distancia-longitud se compone de dos partes: la distancia desde la posición actual
hasta el comienzo de la coincidencia y la longitud de la coincidencia. La información recién
comprimida también está precedida por un bit de bandera para distinguir los literales de
los pares distancia-longitud. Los bits de bandera se pueden empaquetar juntos en un byte
para conservar memoria. El acceso eficiente al diccionario es clave, por lo que la mayoría
de los programas, incluido GZIP, implementan el diccionario mediante funciones hash.
Las implementaciones de hardware de los algoritmos de codificación LZ77 suelen utilizar
memorias direccionables de contenido (CAM) o matrices sistólicas. aunque las CAM ge-
neran un alto rendimiento, son costosas en términos de requisitos de hardware. Por otro
lado, las matrices sistólicas requieren menos hardware y ofrecen una capacidad de prueba
mejorada. Ambas tecnologías tienden a ser complejas y dependen de las características
proporcionadas por la arquitectura del hardware.

CAPÍTULO 3. ANÁLISIS 32

3.1.1. Complejidad computacional del algoritmo LZ77

El algoritmo LZ77, diseñado por Ziv y Lempel en 1977 [72], utiliza una ventana desli-
zante para identificar patrones repetitivos en un flujo de datos, reemplazando las cadenas
redundantes por referencias compactas a posiciones anteriores. Este enfoque permite una
compresión eficiente sin pérdida de información, pero su implementación presenta diferen-
tes complejidades computacionales dependiendo de si se ejecuta en software o hardware.

Complejidad computacional en software

En una implementación básica de LZ77 en software, cada símbolo del texto de entrada
se compara con las cadenas almacenadas en la ventana deslizante para encontrar la coin-
cidencia más larga. Considerando la complejidad computacional de este algoritmo, es de
O(n ·m), donde:

n: Longitud del texto de entrada.

m: Ventana deslizante, tamaño.

Por ejemplo, con n = 1, 000, 000 caracteres y m = 32, 768 caracteres (tamaño típico
de ventana en compresores como gzip), el número máximo de operaciones podría alcanzar
aproximadamente 3.28×1010. Se puede optimizar el cálculo en parte, utilizando estructuras
de datos como lo son, tablas hash o árboles de subfijos, estos pueden reducir la complejidad
de búsqueda promedio a solo O(n). aunque se debe tener en cuenta que estas optimizaciones
hacen que se consuma más memoria y puede ser fuente de cuellos de botella al procesar
grandes volúmenes de datos.

En sistemas que tienen que ejecutarse con recursos limitados, el caso de los dispositivos
móviles, estas optimizaciones por lo general son inviables, ya que se tiene memoria y energía
restringida. También se debe considerar la latencia que agrega el acceso a memoria y que
se debe procesar de forma secuencial, resultando en una afectación en el tiempo total de
ejecución, limitando la optimización y escalabilidad del algoritmo solo con soluciones vía
software.

Implementación en hardware y su complejidad

En hardware, el algoritmo LZ77 puede beneficiarse enormemente de la paralelización.
Usando una arquitectura basada en matrices sistólicas, cada celda de la matriz puede
asignarse a la comparación de sub-cadenas específicas dentro de la ventana deslizante.
Esto permite realizar múltiples operaciones de búsqueda y comparación simultáneamente.
La complejidad práctica de esta implementación se reduce a O(n), ya que cada símbolo
del texto de entrada se procesa en un ciclo de reloj.

Por ejemplo, un FPGA como el Artix-7 XC7A200T puede integrar hasta 740 bloques
DSP y 215,360 celdas lógicas. En una configuración típica, un diseño de matriz sistólica
para LZ77 podría dividir la ventana deslizante en 256 bloques, con cada bloque maneja-
do por un conjunto de celdas. Si el FPGA opera a una frecuencia interna de 200MHz,
cada símbolo puede procesarse en aproximadamente 5 ns, permitiendo una tasa de proce-
samiento cercana a 200MB s−1. Esto sigue representando una mejora significativa respecto
a implementaciones en software, que suelen alcanzar tasas promedio cercanas a 50MB s−1.

CAPÍTULO 3. ANÁLISIS 33

Comparación y cambios en la complejidad

El cambio en la complejidad computacional entre software y hardware es notable. En
software, el procesamiento secuencial y las dependencias en estructuras auxiliares incre-
mentan tanto el tiempo de ejecución como la utilización de recursos. En hardware, la
paralelización reduce la complejidad efectiva, ya que las operaciones más intensivas, como
la comparación y la búsqueda, se distribuyen en múltiples celdas que operan de manera
concurrente.

Adicionalmente, el uso de memoria en hardware está optimizado para minimizar accesos
redundantes. ya que se tienen bloques de RAM distribuidos localmente para ayudar a tener
un acceso rápido y eficiente, mientras que en software la memoria puede convertirse en un
cuello de botella.

Ejemplo de complejidad entre software y hardware

Un ejemplo práctico de complejidad alta puede observarse al procesar un archivo de 1
GB utilizando LZ77 con una ventana de 64 kB. En software, se necesitarían aproximada-
mente 6.4× 1010 comparaciones, lo que llevaría varios minutos en un procesador típico de
3 GHz. Sin embargo, en hardware, el mismo archivo podría llegar a procesarse en menor
tiempo, gracias a la paralelización y a la eliminación de cuellos de botella en memoria.

3.1.2. Impacto en el diseño de hardware

Diseñar hardware para implementar LZ77 implica equilibrar el uso de recursos con el
rendimiento deseado. Por ejemplo, el Artix-7 XC7A200T puede proporcionar suficiente
capacidad lógica y bloques DSP para manejar ventanas deslizantes de hasta 128 kB con
baja latencia: más adelante se detallan las características de la tarjeta de pruebas utilizada.
La escalabilidad del diseño también es un factor crítico, ya que arquitecturas más grandes
pueden integrarse fácilmente en hardware reconfigurable para manejar mayores volúmenes
de datos sin comprometer la velocidad de procesamiento. Mientras que el algoritmo LZ77
mantiene su lógica fundamental independientemente del entorno, la implementación en
hardware transforma su complejidad computacional. Esto permite alcanzar un rendimiento
significativamente superior, lo que lo hace adecuado para aplicaciones de alta demanda
como la compresión en tiempo real y el procesamiento masivo de datos. Se realiza la
siguiente propuesta de entradas y resultados que debe tener la arquitectura de compresión.

3.2. Descripción del hardware empleado
La tarjeta de desarrollo AX7A200, basada en el FPGA AMD Artix-7 XC7A200T, fue

seleccionada para este proyecto por su combinación de soporte a largo plazo, flexibilidad
modular y capacidades técnicas avanzadas, se muestra en la figura 3.2 . AMD garantiza
soporte oficial para la familia Artix-7 hasta el año 2035, lo que la convierte en una solución
ideal por la cantidad de personas utilizándola actualmente y el soporte oficial que tiene
en el presente tanto en la herramienta de desarrollo, como en foros de ayuda en caso de
requerirse, a diferencia de otras tarjetas de desarrollo que se consideraron [75].

CAPÍTULO 3. ANÁLISIS 34

Figura 3.2: FPGA utilizada, tomado de [2]

3.2.1. Características de la tarjeta AX7A200

La tarjeta AX7A200 integra el módulo SoM AC7A200. La placa incluye una amplia
gama de conectores y componentes, como PCIe 2.0, dos ranuras SFP, puertos HDMI de
entrada y salida, un conector JTAG para programación, una ranura para tarjetas SD, y
dos conectores de expansión de 40 pines. Estas características hacen que sea apta para una
variedad de aplicaciones, incluyendo:

1. Procesamiento de datos intensivo, gracias a su soporte para comunicaciones de alta
velocidad a través de PCIe.

2. Procesamiento y transmisión de video e imágenes con entradas y salidas HDMI.

3. Transmisión de datos Ethernet mediante fibra óptica utilizando las ranuras SFP.

La capacidad de expansión de la tarjeta permite integrar módulos adicionales, como
sistemas de adquisición de datos AD/DA, cámaras para visión artificial y pantallas LCD, lo
que incrementa su versatilidad. Esta flexibilidad asegura que el hardware pueda adaptarse
fácilmente a nuevas necesidades y escalar en complejidad sin reemplazar el sistema base
[76].

3.2.2. Especificaciones técnicas del FPGA Artix-7 XC7A200T

El FPGA Artix-7 XC7A200T, núcleo de la tarjeta, ofrece especificaciones destacables
en su categoría, manteniendo un precio coherente:

1. Capacidad lógica: 215,360 celdas lógicas, suficientes para implementar algoritmos
complejos, desde compresión de datos hasta procesamiento de señales.

2. Frecuencia interna: Hasta 200 MHz, lo que proporciona una alta capacidad de pro-
cesamiento para aplicaciones intensivas en cálculo.

CAPÍTULO 3. ANÁLISIS 35

3. Memoria integrada: 13.14 Mb de memoria de bloque, ideal para almacenar datos
temporales durante el procesamiento.

4. Capacidad de DSP: 740 bloques DSP dedicados, optimizados para cálculos matemá-
ticos intensivos como multiplicaciones matriciales y filtros digitales.

5. Interfaz transceptora: Compatible con transceptores de alta velocidad, alcanzando
tasas de datos de hasta 6.6 Gbps, crucial para aplicaciones de comunicación.

3.2.3. Consumo energético y rendimiento térmico

Una de las características a destacar de la tarjeta de desarrollo Artix 7, es su eficiencia
energética, alcanzando un equilibrio entre alto rendimiento y bajo consumo de potencia.
De acuerdo con sus especificaciones, el consumo promedio es entre 5 y 20 W, dependiendo
de la complejidad de la aplicación y los recursos utilizados del FPGA. Este bajo consumo
lo hace ideal para aplicaciones en sistemás embebidas o móviles, donde se debe considerar
la eficiencia energética. La tarjeta está diseñada para operar en un rango de temperaturas
industriales, soportando entre -40 °C y 85 °C, lo que la hace apta para entornos cambiantes
y hasta aplicaciones al aire libre.

3.2.4. Velocidad de operación y latencia

La velocidad a la cual opera la tarjeta de desarrollo permite realizar cálculos en paralelo
con baja latencia. Esto es útil en tareas específicas como la compresión de datos, donde las
operaciones de búsqueda y comparación pueden realizarse de forma paralela eficientemente.
Al implementar algoritmos en hardware, como el caso de matrices sistólicas, la latencia
puede reducirse aún más, ya que se busca mejorar el rendimiento de la arquitectura al
tener el flujo de datos sincronizado entre los elementos de procesamiento.

3.2.5. Escalabilidad y aplicaciones

La tarjeta de desarrollo elegida facilita la escalabilidad, ya que permite agregar dife-
rentes módulos de forma sencilla. Esto la convierte en una solución flexible para proyectos
que requieren cambios constantes o mejoras a largo plazo. Entre sus aplicaciones destacan:

1. Procesamiento de señales digitales (DSP) en tiempo real.

2. Compresión y transmisión de datos en redes de alta velocidad.

3. Sistemás de visión artificial y procesamiento de imágenes en entornos industriales.

La tarjeta de desarrollo AX7A200, con el FPGA Artix-7 XC7A200T, ofrece una com-
binación equilibrada de rendimiento, eficiencia energética y flexibilidad. Su soporte a largo
plazo y su diseño modular sirven para mantener relevancia para proyectos industriales y
científicos en los próximos años.

CAPÍTULO 3. ANÁLISIS 36

3.3. Desarrollo de modelo general
En esta etapa se planeó a grandes rasgos el alcance que debe tener la arquitectura

como un todo, así como su posible composición y formas viables de dividirlo en pequeñas
funcionalidades que se pueden desarrollar.

Aunque en la actualidad se siguen desarrollando teorías y métodos de compresión, de-
pendiendo del tipo de compresión que se utilice, es diferente el método en que se procesan
los datos; pero el objetivo que siguen es el mismo, hacer llegar al canal de comunicación
el resultado. Este proceso se muestra de forma general en la figura 3.3. Se tienen los da-

Figura 3.3: Diagrama de bloques básico de compresión, elaboración propia.

tos originales, se procesan mediante algoritmos de compresión y el resultado se almacena
localmente o se realiza la transmisión del archivo (esto no compete al esquema de com-
presión, sino al manejo del mismo archivo por el sistema gobernante). Finalmente, cuando
se requieren los datos originales, se emplean algoritmos de descompresión compatibles con
los utilizados en compresión, obteniendo datos congruentes con los originales.

La arquitectura propuesta para comprimir se puede descomponer en tres grandes apar-
tados, los cuales son:

1. Unidad de compresión: Diseñada como un módulo específico dentro del FPGA, se
encarga de aplicar el algoritmo basado en LZ77 mediante una configuración en pa-
ralelo.

2. Pipeline para procesamiento continuo: El diseño utiliza un pipeline para garantizar
un flujo constante de datos, maximizando el rendimiento en tareas de compresión y
reduciendo la latencia.

3. Gestión de memoria: Se integran buffers locales para manejar fragmentos de da-
tos y minimizar accesos redundantes a la memoria externa, mejorando la eficiencia
energética y reduciendo los tiempos de espera.

Cada uno de ellos con diversas funcionalidades y alcance particular, lo cual permite
tener las siguientes ventajas:

CAPÍTULO 3. ANÁLISIS 37

1. Arquitectura escalable: en principio bajo una misma tarjeta de desarrollo de acuerdo
a sus capacidades soportadas, modificando el número de nodos utilizados en la matriz
de procesamiento de datos implementada.

2. Modular: Se busca realizar la arquitectura mediante módulos, para poder realizar las
adaptaciones o modificaciones necesarias que surjan en cada apartado sin necesidad
de una reingeniería de toda la arquitectura, manteniendo, corrigiendo y mejorando
el comportamiento de cada apartado sin afectar al resto.

3. Pruebas unitarias: Cada módulo realiza ciertas tareas que a los demás módulos no
les compete conocer cómo se hacen. Con este enfoque, se logra realizar pruebas
individuales sobre los datos que se especifica debe recibir y generar cada uno, para así
poder corroborar el correcto funcionamiento de cada módulo de forma independiente.

4. Carencia de un sólo punto de fallo: permite que, en caso de que exista algún fallo
en el prototipo, sólo sea necesaria la sustitución del componente que lo presenta,
manteniendo al resto sin afectaciones.

Para poder construir la lista de funcionalidades que la arquitectura debe tener y como parte
del análisis, se define primero cómo funciona el algoritmo en el cual se basa el trabajo.

3.3.1. Definición de casos de prueba

Para evaluar la arquitectura propuesta, se consideraron pruebas específicas para medir
su funcionalidad, eficiencia y robustez bajo diferentes condiciones. Estas pruebas se lleva-
rán a cabo utilizando archivos de compresión estándar ampliamente reconocidos, como los
definidos por el Canterbury Corpus y el Calgary Corpus, que proporcionan datos repre-
sentativos con diversas características estadísticas. A continuación, se detallan los casos de
prueba organizados por métricas clave:

1. Tiempo de compresión

2. Tasa de compresión

3. Consumo energético

Tiempo de compresión

El tiempo de compresión del sistema se medirá utilizando temporizadores integrados
en el entorno de pruebas del FPGA. Para ello, se cargarán archivos de prueba con tamaños
desde 4Kb hasta 1Mb, seleccionados del Canterbury Corpus para garantizar una represen-
tación balanceada de datos repetitivos y aleatorios. Cada archivo será procesado con una
ventana deslizante de 64 kB, de acuerdo con las especificaciones del diseño.

Los tiempos de inicio y finalización de la operación de compresión se registrarán con
precisión de nanosegundos, tomando en cuenta la frecuencia de operación del FPGA, con-
figurada a 200 MHz. Estos datos permitirán calcular la velocidad promedio de compresión
en MB/s. Se espera que el sistema alcance velocidades superiores a 200 MB/s, basadas en
la paralelización proporcionada por las matrices sistólicas y la capacidad lógica del Artix-7
XC7A200T [76].

CAPÍTULO 3. ANÁLISIS 38

Tasa de compresión

La tasa de compresión se evaluará comparando los tamaños de los archivos originales
y comprimidos. Para cada archivo de entrada, el sistema generará un archivo comprimido
cuya relación de tamaño será calculada como R = Tamaño original

Tamaño comprimido . Este análisis se realizará
utilizando archivos con diferentes características, como: - Archivos altamente repetitivos
(por ejemplo, aaa.txt del Canterbury Corpus). - Archivos de alta entropía, como datos
generados aleatoriamente. - Mezclas intermedias, como textos con estructura semántica
(bible.txt del Calgary Corpus).

Los resultados serán comparados con las tasas obtenidas por compresores LZ77 en soft-
ware, como gzip y zlib, para validar la consistencia del sistema. Se espera que la eficiencia
del hardware, basada en la búsqueda paralela de coincidencias, con tasas equivalentes o
superiores, con una reducción significativa en el tiempo de procesamiento.

Consumo energético

El análisis se realizará empleando las herramientas especializadas de estimación y simu-
lación de potencia disponibles en el entorno Vivado, así como parámetros técnicos derivados
de las características del FPGA Artix-7 XC7A200T. Este análisis incluye tanto la poten-
cia estática como la dinámica, siendo estas las principales contribuyentes al consumo total
[77].

Para la estimación de consumo, se utilizará la herramienta Report Power de Vivado
en la etapa post-route, donde ya se han definido los recursos de interconexión y las res-
tricciones temporales del diseño. Esta herramienta permite analizar de manera precisa la
actividad interna del circuito, ya que utiliza el archivo SAIF (Switching Activity Inter-
change Format en inglés), generado a partir de simulaciones representativas del sistema.
Dichas simulaciones emplearán datos de entrada de Canterbury Corpus.

El archivo SAIF contendrá información detallada sobre la actividad de los nodos del
circuito, incluyendo la probabilidad estática y la tasa de conmutación de señales. Esto
garantiza que la estimación de consumo energético sea coherente con el caso de uso típico
del sistema, donde se procesan flujos de datos de alta velocidad y se busca mantener una
frecuencia de operación constante de 200 MHz.

Además, el análisis incluirá la evaluación de parámetros ambientales en la herramienta
Report Power, como la temperatura de unión (junction temperature) y el flujo de aire. Se
configurará una temperatura típica de operación de 60 °C y se asumirá un flujo de aire
nulo (ya que no tendrá disipación activa). Los voltajes de alimentación se mantendrán en
sus valores predeterminados, ajustados al estándar del Artix-7.

Como resultado se generará un reporte textual. Este informe contendrá un desglose
detallado del consumo total, separando en componentes dinámicos y estáticos. La potencia
dinámica se analizará en función de la actividad de las señales, mientras que la potencia
estática estará influenciada principalmente por las características del proceso de fabricación
del FPGA y las condiciones térmicas.

Este enfoque busca comprender el consumo energético teórico que la arquitectura pro-
puesta tendrá, permitiendo identificar áreas potenciales de optimización en el diseño. Los
resultados se utilizarán como referencia para futuras iteraciones, buscando que el sistema

CAPÍTULO 3. ANÁLISIS 39

sea eficiente desde el punto de vista energético.
Para poder construir la lista de funcionalidades que la arquitectura debe tener y como
parte del análisis, se define primero cómo debe funcionar de acuerdo a sus requerimientos.

3.4. Especificación de requerimientos del sistema
Este apartado detalla los requerimientos del sistema de compresión de datos basado

en hardware, considerando la especificación IEE 830 [78]. El objetivo es establecer reque-
rimientos funcionales y no funcionales, así como criterios de verificación.

3.4.1. Requerimientos funcionales

La arquitectura de hardware propuesta debe cumplir con los siguientes requerimientos
funcionales definidos específicamente para buscar tener un correcto y eficiente procesa-
miento de datos.

1. El sistema debe ser capaz de recibir flujos de entrada de hasta 100MB/s.

2. El procesamiento de los datos debe realizarse en bloques, con soporte para esca-
labilidad que permita ampliar el tamaño del bloque según los requerimientos del
sistema.

3. El sistema debe almacenar temporalmente los datos entrantes en buffers internos
para garantizar la continuidad del flujo y prevenir pérdida de información.

4. La arquitectura debe implementar una matriz sistólica en hardware para acelerar las
operaciones de coincidencia de cadenas. Cada elemento de procesamiento (eP) debe
ser capaz de comparar un símbolo de entrada con una sub-cadena del diccionario.

5. El sistema debe generar referencias comprimidas en formato tipo distancia, longitud,
basada en el estándar LZ77.

6. El sistema debe ser capaz de operar con datos provenientes de archivos de texto
plano codificados en ASCII.

7. El sistema debe ser verificable por simulación, generando como salida la tasa de
compresión lograda (relación entre tamaño original y comprimido) y el tiempo total
de procesamiento.

3.4.2. Requerimientos no funcionales

1. El consumo energético total del sistema debe mantenerse dentro del rango de 5W
a 20W, en función de la carga de trabajo, siendo eficiente en energía durante la
operación continua.

2. El diseño debe considerar el uso eficiente de recursos internos del FPGA Artix-7
XC7A200T.

CAPÍTULO 3. ANÁLISIS 40

3. La disipación de potencia estática debe ser lo suficientemente baja como para per-
mitir enfriamiento mediante disipación pasiva.

4. El sistema debe operar de forma estable dentro del rango térmico del FPGA (−40 ◦C
a 85 ◦C), con pruebas de temperatura realizadas a 25 ◦C bajo condiciones ambientales.

5. La arquitectura debe ser escalable, permitiendo parametrizar el número de eP en
la matriz sistólica y el tamaño de ventana, sin exceder los recursos disponibles ni
afectar la frecuencia de operación.

6. El sistema debe mantener compatibilidad con interfaces estándar ampliamente utili-
zadas (PCIe, Ethernet, USB), facilitando su integración en plataformas heterogéneas
sin adaptaciones estructurales mayores.

7. En pruebas de simulación, deben generarse reportes automáticos que documenten el
uso de LUTs, FFs, DSPs, y BRAMs, así como el consumo total estimado de energía
y el margen térmico esperado.

8. En pruebas físicas realizadas sobre la tarjeta de desarrollo compatible con el XC7A200T,
debe instrumentarse la medición del consumo energético promedio mediante un me-
didor de corriente y voltaje externo, registrando valores bajo carga típica y máxima.

3.5. Propuesta: Compresor con ventana deslizante
Con base en la teoría de ventana deslizante y una vez definidos los requerimientos a los

que se debe someter la arquitectura. Se diseñó un algoritmo que comprima la información
expresada en texto plano; de ello se obtendrán las operaciones básicas que debe realizar
la arquitectura. Más adelante se consideran dichas operaciones para verificar la forma en
que se puede mejorar el proceso implementando ciertas tareas mediante matriz sistólica.
A continuación, se muestran los pasos y razonamientos surgidos para la propuesta. Una
de las características de este método de compresión es que el nivel de compresión depende
del diccionario utilizado, lo que significa que se debe seleccionar un diccionario adecuado.
En algunas propuestas estudiadas se propone un diccionario en inglés, pero este puede
adaptarse según los entornos probables del texto a comprimir. La propuesta consiste en
tener un diccionario dinámico, que se ajusta dependiendo del texto a comprimir. Se tienen
las siguientes características en la primera versión de la propuesta.

1. Entradas: Caracteres codificados en ASCII extendido (0 a 255 caracteres), utilizan
8 bits cada carácter.

2. Diccionario: 4096 bits (512 caracteres).

3. Bloque de entrada: 128 bits (16 caracteres).

4. Proceso: Recorre la entrada de bytes en búsqueda de la coincidencia más grande,
comparándola con el diccionario (previamente almacenado).

5. Salida: Triada (Distancia, Longitud, Carácter).

CAPÍTULO 3. ANÁLISIS 41

6. Especificaciones:

a) Distancia limitada a 256.

b) Longitud limitada a 256.

c) Carácter varía entre 0 y 255 (ASCII), utiliza 1 byte.

Ejemplo: Utilizando el diccionario: estancia alrededor dormir elección. Considerando al
carácter _ como espacio en blanco para facilidad de lectura. Se muestra en las siguientes
figuras tanto el texto a comprimir, considerando el primer bloque, como el diccionario
propuesto solo para este ejemplo.

Figura 3.4: Texto de ejemplo, elaboración propia.

Figura 3.5: Diccionario propuesto, elaboración propia.

De acuerdo con la tabla ASCII extendida [79] se obtuvo la tabla de valores ASCII
para el ejemplo propuesto (ver tabla 3.1), internamente la arquitectura realizará estas
comparaciones. Para el ejemplo se seguirán utilizando letras.

Tabla 3.1: Valores ASCII de los caracteres de ejemplo, elaboración propia.
Carácter Valor ASCII Carácter Valor ASCII Carácter Valor ASCII
E 69 e 101 l 108
s 115 s 115 _ 32
t 116 t 116 e 101
a 97 a 97 s 115
_ 32 c 99 t 116
e 101 i 105 a 97
s 115 ó 162 d 100
_ 32 n 110 o 111
l 108 _ 32 . 46
a 97 d 100
_ 32 e 101

CAPÍTULO 3. ANÁLISIS 42

3.5.1. Ejemplo de comparaciones y salidas

Se considerará solo el primer bloque para esclarecer el algoritmo propuesto, se van
obteniendo las acciones que se deben realizar, siendo la comparación entre cada símbolo
del bloque de entrada y el símbolo del diccionario, se leen desde el byte menos significativo
hasta el byte más significativo. Cabe aclarar que también el diccionario se lee así y, por
lo tanto, también se debe llenar así. Considerándose entonces el diccionario real como el
mostrado en la figura 3.6 . En la tabla 3.2 se recaba el resultado de la compresión de los
primeros 6 símbolos del bloque (estado), en la salida se emite el índice y la distancia de la
coincidencia dentro del diccionario. A diferencia de LZ77 la propuesta no emite el tercer
valor, ya que se puede obtener fácilmente por los índices y disminuye el almacenamiento
requerido en un byte por coincidencia encontrada. El apartado de comparación se tienen
las siguientes opciones (Las abreviaturas utilizadas son para facilitar la lectura de la tabla
y no cambian en nada el funcionamiento del algoritmo propuesto):

1. Comparar siguiente símbolo (CSS).

2. Coincidencia encontrada y comparar símbolos siguientes (CESS).

a) Fin de bloque, no existen más símbolos, emitir a salida coincidencia encontrada
(FB).

b) Fin de bloque, no se pueden buscar más coincidencias, emitir a salida coinci-
dencias acumuladas encontradas (FBEC).

c) Fin de bloque de diccionario, no se pueden buscar más coincidencias, emitir a
salida coincidencias acumuladas encontradas (FBDC).

3. Coincidencia no encontrada y escribir literal (CNEL).

Figura 3.6: Diccionario con posiciones corregidas, elaboración propia.

La tabla con la comparación de solo cinco símbolos muestra que se debe considerar
un diccionario óptimo para cada texto a comprimir, de lo contrario resultaría un archivo
comprimido de mayor peso que los datos originales, siendo que la tupla resultante por
cada coincidencia ocupa más bytes que el mismo símbolo comprimido, esto se aprecia en
la salida de la tabla 3.2 donde todas los símbolos se encuentran en el diccionario con
palabras aleatorias, pero en todos existe una distancia de 1, por lo tanto el diccionario no
es óptimo ya que no se encuentran frases en él. Por ello se propone tener un diccionario
dinámico para que se adecúe a cada texto de mejor forma que un diccionario aleatorio.

CAPÍTULO 3. ANÁLISIS 43

Tabla 3.2: Decisión con seis símbolos, elaboración propia.
Comparación Decisión Salida
o:e CSS
o:s CSS
o:t CSS

...
o:o CESS 16,

FB 16,1
d:e CSS
d:e ...
d:d CESS 13,
o:e CNEL 13,1
a:a CESS 3,
d:t CNEL 3,1
t:t CESS 2,1
s:s CESS 1,1
e:e CESS 0,1

3.5.2. Diccionario dinámico

En la búsqueda de mejorar el desempeño de la arquitectura propuesta, se diseñará un
diccionario dinámico, el cual consiste en un conjunto de caracteres; en específico, conjunto
de caracteres previamente encontrados en el texto y codificados mediante ASCII exten-
dido. Para con ello buscar en los bloques de caracteres posteriores, coincidencias con los
caracteres previamente almacenados.

Se propone el diseño de un diccionario dinámico, se comienza con un buffer vacío, el
cual se va llenando a medida que se van leyendo los bloques a comprimir. En la figura
3.7 se muestra el llenado del diccionario dinámico para el ejemplo propuesto; también
se corrigieron las posiciones de entrada del bloque. Para representación y facilidad de
lectura se muestran de izquierda a derecha los dos buffer, internamente se leen de derecha
a izquierda del MSB al LSB.

Es evidente que, si el tamaño del primer bloque es menor que el tamaño del diccionario,
este quedará completamente contenido en el diccionario. Pero la compresión no es solo de
un bloque y el diccionario se utiliza a lo largo de todos los bloques. Por lo tanto, el
diccionario en un punto estará lleno. Esta investigación se enfoca en matrices sistólicas,
pero el llenado y adaptación de diccionarios dinámicos también son un tema de sumo
interés y que tiene aún muchas áreas de oportunidad, para el presente trabajo se utiliza el
diccionario dinámico esencial. Considerando el texto del ejemplo completo (no solo para el
primer bloque) se tienen los resultados recabados en la tabla 3.4. En las figuras 3.8 y 3.9
se observa el llenado del diccionario y los bloques a comprimir.

El ejemplo mostrado con el diccionario dinámico pasa a tener las mejores tasas posi-

CAPÍTULO 3. ANÁLISIS 44

Figura 3.7: Diccionario dinámico propuesto, elaboración propia.

Tabla 3.3: Entrada completa, elaboración propia.
Comparación Decisión Salida
E:E CESS

...
c:c FBEC 0,16
i:E CSS

...
o:o FBEC 16,13

Figura 3.8: Diccionario dinámico bloque 1, elaboración propia.

Figura 3.9: Diccionario dinámico bloque 2, elaboración propia.

bles de compresión con este método. Pero, este caso es excepcional, solo funcionaría con
un diccionario de mayor tamaño que el texto a comprimir, y esto no es real ni eficiente, ya
que el diccionario se debe agregar al archivo comprimido, convirtiéndose el diccionario en
realidad en el archivo original y necesitando otro archivo para los índices que terminarían

CAPÍTULO 3. ANÁLISIS 45

recuperando el mismo archivo. Pero un diccionario dinámico con un tamaño adecuado,
aunque no llegue a tener estos niveles de compresión si llega a ser muy útil, ya que el
diccionario no pesará lo mismo que el archivo original y la lista de longitudes y distancias
será más adecuada que con diccionarios estáticos. En el ejemplo con diccionario dinámico
se pasó de un texto que ocupaba 33 bytes a 39 bytes (considerando el diccionario), demos-
trando lo dicho antes, si el diccionario es más grande, el archivo comprimido terminara
pesando más que el archivo original. Para efectos de que quede clara la propuesta y se
demuestre que el diccionario dinámico sí es una propuesta eficiente, se muestra el ejemplo
considerando un diccionario más pequeño que la entrada (en la realidad, la mayoría de
los casos serán así). Considerando solo para el ejemplo un diccionario de un tercio de la
entrada, se tienen los resultados de la tabla 3.4 y en las figuras 3.10 y 3.11 se muestran los
bloques y diccionario dinámico utilizado.

Tabla 3.4: Entrada completa con diccionario dinámico pequeño, elaboración propia.
Comparación Decisión Salida
E:E CESS

...
a:a FBDC 0,11
:E CSS

...
s:s CNEL 4,3
t:E CSS

...
a:a CNEL 2,2
c:E CSS

...
FBEC 0,0

i FBEC 0,0
ó FBEC 0,0
n FBEC 0,0
: CESS

...
FBEC 4,1

d FBEC 0,0
e:e CESS

...
FBEC 5,1

l FBEC 0,0
: CESS

...
FBEC 4,3

t:t CESS
...
FBEC 2,2

d FBEC 0,0
o FBEC 0,0

CAPÍTULO 3. ANÁLISIS 46

Figura 3.10: Diccionario dinámico pequeño con bloque 1, elaboración propia.

Figura 3.11: Diccionario dinámico pequeño con bloque 2, elaboración propia.

Con un diccionario de un tercio del texto, el ejemplo en lugar de ocupar 33 bytes de
almacenamiento resulta de un tamaño de 56 bytes. Esto es resultado de comprimir textos
pequeños, y una falta de optimización que todavía es posible; es evidente que el método
en general, al igual que muchos otros, tiene carencias para comprimir textos pequeños. El
verdadero potencial se comprueba con archivos de texto reales, que son de mayor tamaño en
cuanto a símbolos y siguen patrones en las palabras que utilizan, ahí es donde el compresor
propuesto basado en ventana deslizante debe demostrar su eficiencia. Con el algoritmo a
desarrollar analizado, se debe tener en cuenta también el hardware de pruebas utilizado.

3.6. Descripción del algoritmo de compresión en hard-
ware

La investigación se enfoca en la mejora del proceso de compresión mediante el diseño
de hardware dedicado. El traslado de un algoritmo de software a una implementación en
hardware no implica que su desempeño sea superior por el simple hecho de estar implemen-
tado en hardware. Por este motivo, una etapa inicial consiste en la especificación directa
del algoritmo original en un lenguaje de descripción de hardware (HDL), replicando las
operaciones en software. Este enfoque permite identificar las limitaciones inherentes al al-
goritmo pensado para software cuando se ejecuta en hardware, así como evaluar cómo los
recursos y características del hardware pueden explotarse para mejorar su rendimiento.

Una metodología ampliamente aceptada para optimizar algoritmos en hardware con-
siste en implementar primero una versión base del algoritmo, que respete estrictamente
la lógica secuencial utilizada en software. Desde este punto de partida, se analizan las

CAPÍTULO 3. ANÁLISIS 47

áreas críticas del proceso, como el manejo de datos, las dependencias internas y las ope-
raciones que se prestan a la paralelización, como bloques DSP, memorias internas o lógica
configurable.

Al establecer un diseño inicial directamente en HDL, se puede tener un análisis más
profundo de las capacidades del hardware frente a las limitaciones del software, facili-
tando la identificación de estrategias específicas para mejorar la eficiencia del proceso de
compresión.

3.6.1. Módulos y funcionalidades

El codificador a diseñar consta de varios módulos interconectados para realizar compre-
sión de texto, basado en la ventana deslizante, incluyendo el manejo de datos de entrada,
búsqueda de coincidencias y generación de datos de salida.

1. Módulo de entrada: Este módulo gestiona la recepción de los datos de entrada.
Implementa un FIFO para almacenar temporalmente los datos entrantes.

2. Módulo de búsqueda: Se realiza mediante matriz sistólica, para poder buscar coinci-
dencias comparando los símbolos con el diccionario de forma paralela.

3. Módulo de Salida: Después de identificar las coincidencias, este módulo genera los
datos de salida. Esto incluye la posición y longitud de las coincidencias y los símbolos
literales para casos donde no se encuentran coincidencias.

3.6.2. Maquina de estados

La máquina de estados del codificador base administra las transiciones entre los diversos
módulos y coordina las operaciones de codificación. Los estados principales a diseñar se
pueden ver en la figura 3.12, estos incluyen:

1. IDLE: Estado inicial en el que el sistema se prepara para la recepción de datos.

2. INPUT: Estado donde se cargan datos en el buffer y se preparan para el procesa-
miento.

3. SEARCH: Estado que activa la matriz de búsqueda para identificar coincidencias.

4. OUTPUT: Estado en el cual los resultados de la búsqueda se codifican y preparan
para la salida.

3.6.3. Optimizaciones y rendimiento

El diseño inicial del sistema está configurado para emular la lógica de software, pro-
porcionando una base para identificar áreas donde el hardware puede ofrecer mejoras
significativas. Posibles optimizaciones incluyen el ajuste en la búsqueda y administración

CAPÍTULO 3. ANÁLISIS 48

Figura 3.12: Maquina de estados base de compresor, elaboración propia.

del diccionario, así como la parte medular de este trabajo; se buscará mejorar el aprove-
chamiento del hardware mediante matrices sistólicas en el apartado de búsqueda y compa-
ración. El diseño generado inicialmente se utiliza como base para realizar las adecuaciones
necesarias y verificar las mejoras hechas contra el primero.

3.7. Descripción del algoritmo de descompresión en hard-
ware

Se especificó también el decodificador, que descompone los datos comprimidos y recu-
pera la información original; esto para corroborar que los datos que se trataron en verdad
puedan ser recuperados; se diseñó en Verilog. A continuación, se presenta un análisis de
este sistema, considerando la teoría a la que se debe apegar. Aunque el descompresor no
estaba contemplado en la propuesta original de investigación, se decidió no limitarse a
una simple transcripción del software al hardware. En su lugar, se optó por desarrollar
una versión propia, adaptada a las características del hardware y basada en la teoría de
ventanas deslizantes. Por lo tanto, es necesario implementar también un descompresor que
permita validar tanto la eficacia de la compresión como la correcta recuperación de los
datos.

3.7.1. Máquina de estados

Estos estados facilitan la organización del flujo de datos y la sincronización del proceso
de decodificación; el diagrama planeado de su funcionamiento se muestra en la figura 3.13.
El núcleo del decodificador es una máquina de estados finitos (FSM) que controla el proceso
de decodificación a través de varios estados clave:

IDLE: Espera activa para inicio de datos.

INPUT: Recepción y registro de los datos comprimidos.

DECODE1 y DECODE2_1/2: Decodificación de los datos, donde DECODE1
maneja datos directos y DECODE2 maneja la expansión de referencias de coinciden-
cia.

FINISH: Finalización del proceso de decodificación.

CAPÍTULO 3. ANÁLISIS 49

Figura 3.13: Maquina de estados base de descompresor, elaboración propia.

3.7.2. Implementación y funcionalidad

El decodificador utiliza un buffer circular y varios registros para manejar la información
de desplazamiento y longitud. La lógica implementada en Verilog se encarga de extraer
estos valores de los datos de entrada y utilizarlos para reconstruir la información original
a partir de fragmentos previamente decodificados y almacenados en el buffer.

3.8. Construcción de la lista de funcionalidades
Conforme a lo descrito en la sección metodológica, el diseño de la arquitectura se estruc-

turó a partir de representaciones visuales mediante diagramas de bloques. Estos diagramas
permiten abstraer y modelar los módulos (representados por bloques) de mayor relevancia
de la arquitectura propuesta, donde cada bloque corresponde a una etapa específica de la
misma. Las conexiones entre los bloques, representadas mediante flechas, reflejan los flujos
de datos y señales entre módulos, facilitando la comprensión del comportamiento global del
sistema, así como las dependencias entre las entradas y salidas de cada componente. Esta
representación resulta fundamental para garantizar una visión estructurada y coherente
del diseño a nivel de sistema.

La construcción de la lista de funcionalidades se realizó considerando los módulos inter-

CAPÍTULO 3. ANÁLISIS 50

conectados que tiene la arquitectura propuesta, cada uno con funcionalidades específicas
que contribuyen al flujo de compresión.

Cada uno de estos módulos opera de manera coordinada para garantizar que la arqui-
tectura cumpla con los requisitos funcionales y no funcionales definidos. En la figura 3.14
se observa el primer diagrama diseñado para la arquitectura, donde la figura 3.15 es la
corrección de ello. Se cambió el diagrama para no romper con la generalidad y con ello ser
más entendible. Algunos nombres de módulos fueron reescritos para ser más adecuados a
la tarea que llevan a cabo dentro de la arquitectura, aunque dan la impresión de funcionar
en forma secuencial, en el detalle del módulo de búsqueda de coincidencias se aprecia el
paralelismo de la arquitectura.

Figura 3.14: Diagrama de bloques de arquitectura inicial, elaboración propia.

Figura 3.15: Diagrama de bloques de arquitectura corregido, elaboración propia.

A continuación, se describen las funcionalidades asociadas a cada módulo del sistema.

3.8.1. Preprocesamiento de datos

Es responsable de recibir y almacenar temporalmente el flujo de datos proveniente de
la interfaz externa, para ser procesado por la arquitectura. Este módulo incluye un buffer
FIFO diseñado para manejar una tasa de entrada de hasta 200 MB/s. El buffer organiza
los datos en bloques de tamaño configurable, con soporte inicial para 128 bytes, y prepara
estos bloques para su transmisión al módulo de procesamiento principal.

CAPÍTULO 3. ANÁLISIS 51

3.8.2. Gestión de condiciones de búsqueda

Maneja el diccionario necesario para la operación del algoritmo de ventana deslizante.
Este módulo almacena los datos previamente procesados en un buffer implementado en
la RAM interna del FPGA. El buffer debe mantener una estructura de cola circular que
permita almacenar los últimos m bytes procesados, donde m corresponde al tamaño de
la ventana deslizante. El buffer también se encarga de sincronizar las transferencias entre
el preprocesador y la matriz sistólica, buscando que no se produzcan interrupciones en el
flujo de datos.

3.8.3. Búsqueda de coincidencias

Es implementado como una matriz sistólica de elementos de procesamiento; es el núcleo
del sistema. Cada elemento de procesamiento (eP) de la matriz es responsable de realizar
comparaciones entre las sub-cadenas del buffer de búsqueda y los bloques del flujo de
entrada. Este módulo está diseñado para operar en paralelo, procesando múltiples símbolos
de entrada simultáneamente en cada ciclo de reloj. Los PEs realizarán operaciones como
la comparación de sub-cadenas, el cálculo de longitudes de coincidencia y la propagación
de resultados parciales hacia las celdas adyacentes.

3.8.4. Bloque de decisión de coincidencias

Toma los resultados parciales generados por la matriz sistólica y determina cuál es
la coincidencia más larga encontrada en la ventana deslizante. Este módulo compara las
longitudes de coincidencia y selecciona aquella con el valor mayor, obteniendo su posición
correspondiente en el diccionario.

3.8.5. Generador de código comprimido

Recibe las decisiones del bloque de coincidencias y construye las referencias comprimi-
das. Estas referencias incluyen el desplazamiento relativo, la longitud de la coincidencia y
el símbolo literal subsecuente. El módulo debe empaquetar estas referencias en palabras
de datos de salida. Adicionalmente, este módulo debe manejar el flujo de salida de ma-
nera continua, asegurando que los datos comprimidos estén listos para su transmisión o
almacenamiento inmediato.

3.9. Planeación por funcionalidades
Se define la planeación técnica de las actividades a desarrollar a lo largo de los semes-

tres A2025 y B2025, se considera la planeación general del cronograma propuesto y se
refina dentro de esos plazos las tareas que se deben realizar. Esto abarca el desarrollo y la
optimización de los módulos de la arquitectura, desde septiembre hasta junio del año aca-
démico siguiente para el diseño preliminar, la integración de arquitectura, finalizando con
la realización de pruebas y optimizaciones que se requieran. A continuación, se presentan
las actividades por módulo de acuerdo con los objetivos y las funcionalidades especificadas.

CAPÍTULO 3. ANÁLISIS 52

3.9.1. Diseño y desarrollo de módulos (Septiembre - Diciembre)

1. Módulo preprocesamiento de datos: En septiembre, se debe iniciar con el diseño
del módulo de entrada de datos. Este módulo es la entrada a la arquitectura propuesta
y uno de los dos módulos que se conectan con el exterior.

2. Gestión de condiciones de búsqueda: Durante octubre, se desarrollará el módulo
de buffer de búsqueda, lo más relevante de este módulo es la creación de un siste-
ma eficaz para utilizar el diccionario. Este módulo se planea implementar con una
estructura de datos que permita un acceso rápido y efectivo a las cadenas pasadas
para una comparación con la ventana deslizante.

3. Búsqueda de coincidencias: En noviembre, se debe realizar la implementación
de la matriz sistólica para buscar coincidencias. Esta parte del sistema debe utilizar
algoritmos en paralelo para la identificación de patrones repetitivos dentro del flujo
de datos.

4. Bloque de decisión de coincidencias: A inicios de diciembre, se debe realizar la
implementación del módulo que determina la coincidencia más larga encontrada en
la ventana deslizante.

5. Generador de código comprimido: Parte de diciembre se dedicará a integrar
las coincidencias encontradas en un bloque de salida hacia el usuario, preparando el
sistema para las pruebas iniciales de funcionalidad.

3.9.2. Integración y validación (Enero - Junio)

A partir de enero y continuando hasta marzo, se realizará una optimización de cada
módulo. Esto incluirá ajustes finos en la lógica de la matriz sistólica en la FPGA y las
correcciones necesarias.

1. Integración y sincronización de módulos: Parte de enero se dedicará a integrar
los módulos previamente desarrollados. Esta etapa es importante porque los módulos
de entrada, búsqueda y buffer deben trabajar de forma cohesiva y sincronizada,
preparando el sistema para las pruebas iniciales de integración.

2. Pruebas de concepto y simulaciones: En abril, se llevarán a cabo pruebas de
concepto completas y simulaciones detalladas para validar la efectividad de la ar-
quitectura compresora. Estas pruebas ayudarán a identificar cualquier deficiencia o
necesidad de mejora adicional.

3. Preparación y revisión de la documentación: Mayo se dedicará a la redacción
detallada de los resultados y procesos en el documento final de la tesis. Además, se
realizarán correcciones basadas en retroalimentaciones del comité tutorial.

4. Finalización y presentación del proyecto: Junio será el mes donde se finalicen
todas las actividades, incluyendo una última revisión y la presentación del proyecto
al comité evaluador, demostrando la funcionalidad y eficiencia del codificador en
hardware.

Capítulo 4

Diseño

Se desarrolló el diseño de cada módulo de acuerdo con la planeación por funcionalidad.
El siguiente diagrama de bloques muestra de forma general la arquitectura propuesta. Se

Figura 4.1: Diagrama de arquitectura propuesta, elaboración propia.

describe a detalle el diseño de la arquitectura y posteriormente se especifican las carac-
terísticas de cada módulo. La arquitectura diseñada, por su naturaleza de conectarse al
exterior, requiere la integración de un módulo que gestione la entrada de datos, así como
el manejo de la salida de datos comprimidos. Estos componentes, aunque funcionalmente
necesarios, no constituyen el interés principal de la investigación presente. Se considera la
segunda etapa de desarrollo, después de realizar la propuesta en el apartado de análisis y
llegar a las operaciones atómicas, en este apartado se busca detallar en lo posible, como
se implementaron estas operaciones, adaptándose al desarrollo en hardware. La esencia de
este estudio se centra en el análisis y diseño de una matriz sistólica, que es el módulo más
importante de la arquitectura. La matriz sistólica, que por su diseño facilita una ejecución
eficiente y escalable, aprovecha una topología que permite el procesamiento paralelo. Este
enfoque no solo mejora el rendimiento, sino que también optimiza el uso del ancho de ban-
da y disminuye la latencia de la comunicación interna, resultando en un sistema eficiente
para la compresión de datos. Se describe a detalle el diseño de la implementación de la
matriz sistólica propuesta.

4.1. Diseño de matriz sistólica
La matriz sistólica se utiliza para comprimir los datos introducidos, y para ello se utilizó

en parte del diseño de un algoritmo basado en una ventana deslizante. Donde se busca
y compara cada símbolo de entrada con un diccionario. A partir de esto, se asignan la

53

CAPÍTULO 4. DISEÑO 54

longitud y la distancia donde se encuentran las coincidencias. El siguiente diseño abarca el
módulo de gestión de condiciones de búsqueda, la búsqueda de coincidencias y el de decisión
de coincidencias. En la implementación propuesta se tienen dos buffers principales, el
diccionario y el bloque de símbolos, ambos representados como vectores de bits de tamaño
(4096 bits y 128 bits respectivamente) lo que es lo mismo que un diccionario de 512 símbolos
y un bloque de anticipación de 16 símbolos. Cada buffer se dividió internamente en bytes
de 8 bits cada uno. Esto para poder realizar las manipulaciones necesarias de cada byte
de memoria de forma independiente dentro del módulo. Para poder tener acceso directo
a cada byte se define el cableado hacia cada buffer, este enfoque va de la mano con la
organización de cada vector y poder realizar la comparación byte a byte entre los buffers.
Después de tener cada byte asignado y configurado para poder acceder a ellos, se compara
cada segmento del buffer de búsqueda con cada byte del buffer de adelantamiento (cada
símbolo se busca en el segmento del diccionario asignado). En esta etapa de prueba se
dividió en 16 el diccionario, para que cada matriz sistólica de elementos de procesamiento
busque en cada segmento de él. En la tabla 4.1 se muestra cómo se dividió el diccionario
para enviar un segmento a cada elemento de procesamiento, siendo 32 símbolos codificados
en ASCII extendido la longitud de cada segmento de diccionario enviado a cada elemento
de procesamiento.

Tabla 4.1: Segmentos en los que se divide el diccionario, elaboración propia.
ID Segmento Valor máximo Valor mínimo

1 255 0
2 511 256
3 768 512
4 1024 769
5 1280 1023
6 1536 1279
7 1792 1535
8 2048 1791
9 2304 2047
10 2560 2303
11 2816 2559
12 3072 2815
13 3328 3071
14 3584 3327
15 3840 3583
16 4096 3839

Dentro de cada elemento de procesamiento se compara el segmento de diccionario y
símbolo asignado, se detalla su funcionamiento en la siguiente sección. Los índices resul-
tantes de cada elemento de procesamiento se revisan para obtener la posición del símbolo
que coincide dentro del segmento de diccionario, entre este y símbolo. Esta posición se
calcula utilizando una cascada de operadores ternarios que seleccionan el primer índice
con un valor diferente de cero, añadiendo un desplazamiento basado en la posición de la

CAPÍTULO 4. DISEÑO 55

igualdad encontrada dentro de cada segmento de 32 bytes para saber exactamente en qué
posición del diccionario original se encontró esa coincidencia. Adicionalmente, la lógica pa-
ra determinar la longitud de coincidencia se diseñó mediante el cálculo de un XOR entre el
diccionario y el bloque de los símbolos usando el índice calculado, permitiendo identificar
exactamente dónde ocurren discrepancias entre los buffers. Las discrepancias se procesan
para determinar la posición de la primera coincidencia, que a su vez se utiliza para esta-
blecer la longitud de coincidencia. Esta longitud se establece en cero si hay un fallo en las
coincidencias. Finalmente, uno de los aspectos básicos al diseñar una arquitectura y que
evita los latches, es la utilización de relojes para mantener sincronización entre los módulos
de la arquitectura, en este caso se busca utilizar las mejores prácticas conocidas de diseño
HDL, teniendo solo actualizaciones en el flanco positivo del reloj o en un reset negativo,
para garantizar la estabilidad de los datos durante las operaciones de comparación.

4.1.1. Elementos de procesamiento

El elemento de procesamiento (eP) se diseñó de acuerdo con la teoría de matrices
sistólicas. Siendo descrito cada eP para realizar una tarea muy específica, que es evaluar
la coincidencia de un solo símbolo. Teniendo cada eP su propia memoria para almacenar
su diccionario y el símbolo que debe comparar. Estos eP conforman la matriz sistólica,
donde todos los eP son idénticos, teniendo así una configuración para realizar la búsqueda
de coincidencias en paralelo. Con ello, cada paso de la comparación y asignación se realiza
en un solo ciclo de reloj. Demostrando así que se pueden utilizar en paralelo varios eP,
haciendo que el diseño sea escalable, segmentando en tantas partes el diccionario como se
tengan eP en la matriz sistólica. Cada elemento de procesamiento se diseñó con un buffer de
8 bits para cada símbolo, un buffer de 256 bits para su sección asignada del diccionario. La
comparación dentro de cada eP se realiza de manera secuencial, buscando una coincidencia
exacta entre el byte de adelantamiento y cada byte del buffer de búsqueda. La estructura
del módulo se detalla a continuación:

Definición e inicialización de variables: Se define el diccionario como un arreglo de
32 elementos, donde cada elemento tiene 8 bits (256 bits en total). Este arreglo es
llenado por la sección del diccionario que se le envió al eP.

Proceso de comparación: La comparación del símbolo y el diccionario se realiza uti-
lizando una serie de operadores condicionales (si, entonces), que son evaluados de
manera secuencial (se están realizando pruebas con asignaciones bloqueantes, en
breve se pondrá a prueba el funcionamiento con asignaciones no bloqueantes para
realizar comparaciones en paralelo y ver si mejora la eficiencia del eP realizando
comparaciones entre los 32 símbolos del diccionario y el símbolo de forma paralela).
Se describió que, si existe una coincidencia en el índice, se almacena ese índice.

Asignación de resultados: Se tiene también una bandera en el funcionamiento de
cada eP que indica cuando no encontró ninguna coincidencia.

Manejo de salidas: La salida de cada eP es un vector de 5 bits que puede representar
valores de 0 a 31 (los índices de coincidencias posibles dentro del diccionario) y la

CAPÍTULO 4. DISEÑO 56

bandera que indica que no se encontró coincidencia (Ya que la bandera activa existe si
y solo si no se encontraron coincidencias, se escribe sobre el mismo vector la bandera
que es el número 32, imposible que las coincidencias den ese número y manteniéndose
seguro el diseño, a su vez que se optimiza el diseño de la arquitectura.

CAPÍTULO 4. DISEÑO 57

4.2. Módulo de preprocesamiento de datos
Con el diseño principal bien definido. se especifica los detalles de cada módulo que

forma parte de la arquitectura. El módulo de preprocesamiento de datos se encarga de la
recepción y la adecuación de los datos. A continuación, se detalla el diseño de este módulo,
incluyendo sus componentes principales y las especificaciones.

Figura 4.2: Diagrama de módulo de preprocesamiento, elaboración propia.

Función

Este módulo tiene como función principal recibir el flujo de datos desde una interfaz
externa y organizar estos datos en bloques para su posterior procesamiento. Actúa como
el primer punto de contacto para los datos entrantes, almacenándolos temporalmente.

Compatibilidad y codificación

Formatos de entrada: El módulo es compatible con formatos de texto de entrada
codificados en ASCII extendido, lo que permite que sea un compresor que soporte
datos de entrada reales, ya que soporta caracteres especiales.

Entradas y salidas

Entrada: Flujo de datos: Los datos ingresan al módulo en formato de 8 bits por
símbolo, adecuado para manejar el formato de texto codificado en formato ASCII
extendido.

Salida: Se envía un bloque de 128 bits de datos al siguiente módulo.

4.3. Módulo de gestión de condiciones de búsqueda
Este módulo es responsable de manejar el diccionario y el buffer de coincidencias. A

continuación, se detallan sus componentes, funcionalidades y especificaciones técnicas.

CAPÍTULO 4. DISEÑO 58

Figura 4.3: Diagrama de módulo de gestión de condiciones de búsqueda, elaboración propia.

Función

Este módulo opera como el núcleo de almacenamiento y búsqueda para el codificador,
manteniendo las secuencias recientes y proporcionando acceso al diccionario para que la
matriz sistólica busque coincidencias en las cadenas. Es importante para la implementación
del algoritmo de ventana deslizante, permitiendo que las coincidencias encontradas no se
vuelvan a procesar innecesariamente.

Especificaciones del buffer

Doble buffer: En el desarrollo de la arquitectura propuesta, se busca incorporar
como parte de las mejoras propuestas para el siguiente semestre un enfoque que
combina las mejores características de diseños estudiados para buscar obtener el
aprovechamiento del hardware de desarrollo. Se realiza la implementación de un sis-
tema de buffer doble al que tiene acceso el módulo de gestión de condiciones de
búsqueda. Este sistema se compone del clásico diccionario utilizado en ventanas des-
lizantes, para asignar a cada elemento de procesamiento una parte de él y un buffer
secundario que almacena las coincidencias recientemente aceptadas. La introducción
de este buffer adicional busca una mejora del rendimiento, especialmente en esce-
narios donde se encuentran repetidamente los mismos caracteres. En tales casos, el
sistema no requiere volver a consultar el diccionario para cada símbolo repetido. En
su lugar, las coincidencias previamente identificadas se transfieren directamente al
módulo de decisión. Este módulo estará diseñado con la lógica necesaria para ma-
nejar estas situaciones, facilitando un proceso más rápido y reduciendo la carga de
procesamiento símbolo por símbolo. Este diseño se pretende sea un paso adicional
para minimizar la redundancia en el manejo de datos, lo que se traduce en una mayor
rapidez en la compresión y una mejor utilización de los recursos del hardware.

Capacidad ajustable: El tamaño del buffer es ajustable según el tamaño de la
ventana deslizante definida, con una capacidad por defecto de 4096 bits para el apar-
tado del buffer de búsqueda. Esto es configurable según las necesidades específicas
del sistema y puede ser incrementado para adaptarse a ventanas de tamaño mayor.

CAPÍTULO 4. DISEÑO 59

Implementación en la FPGA

El buffer está implementado en los registros interna del FPGA, utilizando una estruc-
tura de cola circular que permite gestionar eficientemente los últimos m bytes procesados,
donde m es el tamaño de la ventana deslizante.

Entradas y salidas

Entrada:

• Datos del módulo de entrada: Los datos se reciben del módulo de prepro-
cesamiento en un bloque de 128 bits, a su vez que actualiza el diccionario y lee
desde el con una capacidad de 4096 bits inicialmente.

Salida:

• Bloque de datos hacia la matriz sistólica: Los bloques de datos procesados
son enviados a la matriz sistólica para la búsqueda de coincidencias a su vez
que se deja listo el diccionario en segmentos de 256 bits para su futura lectura.

Sincronización y gestión de flujo de datos

El módulo también se encarga de sincronizar las transferencias entre el preprocesador
y la matriz sistólica. Por lo cual deben mantener una constante lectura de datos desde
el preprocesador a su vez que mantiene la generación de datos para los elementos que
conforman la matriz sistólica.

4.4. Módulo de búsqueda de coincidencias
Este módulo utiliza una matriz sistólica de elementos de procesamiento (ePs), es esen-

cial en la propuesta. La matriz está enfocada en realizar operaciones en paralelo para
lograr el procesamiento en simultáneo de múltiples símbolos de entrada. A continuación,
se especifican las características de este módulo.

Figura 4.4: Diagrama de módulo de búsqueda de coincidencias, elaboración propia.

CAPÍTULO 4. DISEÑO 60

Arquitectura y funcionalidad

Cada eP en la matriz está interconectado de manera que puede recibir y enviar informa-
ción a sus vecinos inmediatos. Esta disposición permite que las operaciones se realicen de
manera fluida y coordinada a lo largo de toda la matriz, disminuyendo el tiempo empleado
en buscar y comparar.

4.4.1. Operaciones de los ePs

Comparaciones sub-cadena: Cada eP realiza comparaciones entre segmentos del
buffer de búsqueda y bloques del flujo de entrada. Estas comparaciones se realizan
mediante circuitos comparadores lógicos integrados en cada eP.

Cálculo de longitudes de coincidencia: Los eP dan el índice de la coinciden-
cia encontrada dentro de su segmento de diccionario, así se puede determinar es la
repetición de datos en el flujo de entrada comparado con el diccionario.

Propagación de datos

Los datos se propagan a través de la matriz en un modelo de comunicación vecinal,
donde cada eP transmite los resultados de sus comparaciones y cálculos. Este enfoque
reduce los tiempos de propagación de la información y de acceso a la memoria, permitiendo
que el sistema responda en un tiempo menor a los cambios en los datos de entrada.

Componentes de hardware de cada eP

Comparadores lógicos: Cada eP contiene un comparador lógico que realiza com-
paraciones de igualdad entre dos segmentos: uno procedente del buffer de datos y
otro el símbolo a buscar. Este comparador determina si hay una coincidencia entre
los dos segmentos de datos. Esta lógica busca que cada eP pueda identificar correc-
tamente dónde se encontraron coincidencias y responder adecuadamente cuando se
encuentren nuevas coincidencias o cuando se reinicie la búsqueda.

Capacidad de manejo: Cada eP puede procesar elementos de 8 bits, esto para
minimizar la carga de trabajo y aumentar el cómputo en paralelo de instrucciones
atómicas.

Entradas y salidas

Entradas

Datos del generador de condiciones de búsqueda: 256 bits es el tamaño del
buffer de búsqueda, representando los datos del diccionario.

Datos del generador de condiciones de búsqueda: 8 bits es el tamaño del
buffer de anticipación, representando los datos donde se buscará la coincidencia.

CAPÍTULO 4. DISEÑO 61

Salidas

Datos procesados: Los resultados de las operaciones de los eP se transmiten en
paquetes de datos de 5 bits.

Posiciones de coincidencia: La matriz sistólica da las posiciones de las coinciden-
cias, en un segmento de 11 bits (para manejar el diccionario completo), son utilizadas
para identificar el lugar donde se encontró cada coincidencia.

4.5. Módulo de decisión de coincidencias
Recibe los resultados parciales de la matriz sistólica y determina la coincidencia más

larga dentro de la ventana deslizante. Este módulo selecciona la coincidencia que será
finalmente codificada y almacenada.

Figura 4.5: Diagrama de módulo de decisión de coincidencias, elaboración propia.

Función del módulo

Procesa los datos provenientes de la matriz sistólica, comparando las longitudes de las
coincidencias detectadas. Su función principal es identificar y seleccionar la coincidencia
con la mayor longitud.

Especificaciones técnicas

Mejora de la arquitectura : Más allá de seleccionar la coincidencia más larga. Este
módulo también guarda las coincidencias seleccionadas en un buffer interno. La finalidad a
futuro de este almacenamiento es permitir que el módulo de asignación de búsqueda acceda
a estas comparaciones recientes, facilitando la revisión de coincidencias previamente en-
contradas para determinar si requieren ser procesadas nuevamente. Esta capacidad mejora
la eficiencia del sistema al reducir la necesidad de reevaluar coincidencias ya establecidas,
disminuyendo la carga de trabajo general y el uso de recursos.

Entradas y salidas

Entradas

CAPÍTULO 4. DISEÑO 62

Longitudes de coincidencia: Cada longitud de coincidencia, representada en 5
bits cada una, es evaluada por el módulo para determinar cuál es la mayor.

Posiciones de coincidencia: Las posiciones de las coincidencias de 11 bits, son
utilizadas para identificar el lugar dentro del buffer de búsqueda donde se encontró
cada coincidencia.

Salidas

Longitud de la mejor coincidencia: El módulo emite la longitud de la coinci-
dencia más larga detectada, en 5 bits, para indicar la repetición más significativa
encontrada en los datos.

Posición de la mejor coincidencia: Además de la longitud, el módulo también
emite la posición, en 11 bits, facilitando su recuperación y codificación posterior.

4.6. Módulo generador de código comprimido
Transforma las coincidencias seleccionadas por el módulo de decisión de coincidencias

en códigos comprimidos. Este módulo agrupa los resultados del análisis de coincidencias
en un formato que el descompresor entenderá.

Figura 4.6: Diagrama de módulo de generador de código comprimido, elaboración propia.

Función del módulo

El módulo recibe la longitud y la posición de las mejores coincidencias y las agrupa
en una serie de referencias. Estas referencias después se utilizan para reconstruir los datos
originales durante el proceso de descompresión y contienen los elementos necesarios, como
el desplazamiento relativo, la longitud de la coincidencia.

Entradas y salidas

Entradas

CAPÍTULO 4. DISEÑO 63

Longitud de la mejor coincidencia: Recibida en formato de 5 bits, esta entra-
da indica la longitud de la secuencia de datos que ha sido identificada como una
coincidencia en el flujo de entrada.

Posición de la mejor coincidencia: En formato de 11 bytes, especifica la posición
dentro del diccionario donde comienza la coincidencia.

Salida

Código comprimido: El resultado del procesamiento, es en formato de 16 bytes,
encapsula la información necesaria para representar cada coincidencia detectada,
incluyendo tanto la longitud como la posición y el símbolo literal.

4.7. Especificaciones de entradas y salidas para los mó-
dulos de la arquitectura

La tabla 4.2 proporciona una descripción de las entradas y salidas para cada módulo
de la arquitectura propuesta. Se incluyen detalles sobre las dimensiones y los valores que
pueden manejar.

Tabla 4.2: Entradas y salidas de los módulos, elaboración propia.

Módulo Entradas Salidas
Preprocesamiento
de datos

8 bits 128 bits

Gestión de
condiciones de
búsqueda

128 bits, 4096 bits 256 bits

Búsqueda de
coincidencias

(256 bits, 8 bits)
por eP

5 bits, 11 bits

Decisión de
coincidencias

5 bits, 11 bits 5 bits, 11 bits

Generador de
código
comprimido

5 bits, 11 bits 16 bits

Se especifican los datos en la tabla 4.2 , ya que será de ayuda para la etapa siguiente,
donde se debe tener claro los datos que debe recibir y enviar cada módulo.

Capítulo 5

Construcción

Se detalla la construcción de cada funcionalidad para los módulos que conforman la
arquitectura. En este contexto, se describe la implementación de cada módulo y los desafíos
encontrados durante cada fase del desarrollo. Es importante señalar que este documento no
incluye código, ya que no se busca ofrecer una guía detallada paso a paso. Sin embargo, se
describirá cómo se realizó cada proceso y los resultados esperados de cada módulo. Estos
se examinarán en el siguiente capítulo, donde se evaluarán las pruebas y se considerarán
posibles mejoras. Cabe mencionar que cada diseño de cada módulo se llevó a cabo conforme
a lo planificado, iniciando con el módulo de preprocesamiento de datos.

5.1. Módulo de preprocesamiento de datos
Se implementó en Verilog utilizando un controlador FIFO utilizando registros para leer

y escribir en el buffer por donde pasan los datos antes de su procesamiento posterior. Se
consideró también tener señales de control para indicar cuándo el buffer se encuentre lleno
o vacío. La construcción se centró en tener un flujo continuo de datos hacia la arquitectura,
así como manejar de forma correcta caracteres que se encuentran en un archivo de texto. A
continuación, se describen los aspectos más relevantes de la implementación, considerando
posibles mejoras que se comprendieron durante el desarrollo.

Una de las mejoras que se pueden implementar en este módulo, es la utilización de
bloques de memoria especificados por AMD mediante una IP para el manejo de colas
FIFO, pero se debe tener en cuenta si vale la pena quitar generalidad a la arquitectura
en busca de mejorar la eficiencia en específico para esta tarjeta de desarrollo o seguir
con el objetivo inicial que es una puesta a prueba de una arquitectura general con miras
a implementarse a futuro como coprocesador en un dispositivo móvil. Otra mejora que
se puede realizar en el diseño, es aumentar la capacidad del buffer según los requisitos
específicos de la aplicación; esto puede ayudar a manejar mejor los picos de carga de
datos.

64

CAPÍTULO 5. CONSTRUCCIÓN 65

5.2. Módulo de gestión de condiciones de búsqueda
Se realizó buscando optimizar el almacenamiento y la búsqueda de secuencias de datos

dentro de una ventana deslizante. Construido con una combinación de buffers de búsqueda
y un diccionario dinámico.

5.2.1. Estructura del módulo e implementación en verilog

Se utilizó una estructura de cola circular para gestionar el buffer de búsqueda, que
almacena las últimas secuencias procesadas. Este buffer se implementa en los registros
internos del FPGA, aprovechando su alta velocidad de acceso y la capacidad de configurar
detalladamente; por ejemplo, para poder ajustar el tamaño del diccionario,

RAM FPGA

Considerando la tarjeta de desarrollo utilizada, ALINX AX7A200, tiene varios blo-
ques de RAM configurables, que se usaran de forma indirecta, conocidos como bloques de
RAMB18 y RAMB36. Estos bloques pueden configurarse de manera independiente para
funcionar como dos bloques separados de 18Kb o combinados como un bloque de 36Kb,
dependiendo de las necesidades específicas de la aplicación. La RAM puede configurarse
en modos de profundidad y anchura variable, como 512x72, 1024x36, 2048x18 entre otros,
permitiendo ajustes precisos según los requisitos del sistema de compresión de datos.

La RAM interna en este modelo de FPGA también soporta características como:

Acceso de doble puerto: Permite que la RAM sea leída y escrita simultáneamente
en diferentes ubicaciones, lo cual sería de ayuda si se implementa la actualización y
consulta del diccionario en paralelo.

Error Correction Code (ECC) opcional: Mejora la integridad de los datos al
detectar y corregir errores en tiempo real, probablemente va más allá de los objetivos
de este trabajo.

Implementación

En Verilog, el módulo se describe utilizando registros y lógica de control para gestionar
los estados de entrada y salida de datos. Se utilizan generadores de instancia (genvar) y
bloques generate para crear de forma dinámica los elementos necesarios del buffer basados
en los parámetros configurados. Una característica que logra que el diseño sea escalable.
Los buffers se implementaron como arrays de registros, con lógica específica para manejar
la cola circular y actualizar el diccionario.

5.3. Módulo de búsqueda de coincidencias
Se implementó como una matriz sistólica de ePs para comparar las sub-cadenas del

buffer de búsqueda con las cadenas del flujo de entrada de manera paralela en cada ciclo
de reloj.

CAPÍTULO 5. CONSTRUCCIÓN 66

5.3.1. Especificaciones

Cada eP dentro de la matriz sistólica se construyó para realizar comparaciones entre
la entrada y las secuencias del buffer. La implementación utiliza múltiples instancias del
submódulo de comparación, cada uno de los cuales compara segmentos del buffer de bús-
queda y el buffer y las cadenas del flujo de entrada. En la figura 5.1 se muestra el esquema
RTL de un elemento de procesamiento utilizado en el diseño, este realiza la comparación
de un símbolo del diccionario y el buffer de adelantamiento. Los resultados de estas com-

Figura 5.1: Diseño RTL de elemento de procesamiento, elaboración propia.

paraciones son evaluados para determinar la coincidencia más larga. La lógica de selección
combina los resultados de todos los ePs y determina el índice final de la coincidencia más
larga utilizando operadores lógicos y estructuras de control de flujo. En la figura 5.2 se
muestra una matriz pequeña para demostrar cómo se interconectan entre si los elementos
de procesamiento. La matriz sistólica de la figura consta de 4 elementos de procesamiento
interconectados. En la realidad la visualización del diseño no puede ser representada de
forma correcta en un documento, ya que se utilizan 2 matrices sistólicas de 16 elementos
de procesamiento cada una. Esto para poder realizar 32 comparaciones en paralelo, es
fácilmente escalable y se procuró diseñarlo con este fin en mente. Posiblemente una de las

Figura 5.2: Matriz sistólica de la arquitectura, elaboración propia.

mejoras que se podrían realizar en este módulo recae en ajustar las dimensiones de las
comparaciones y explorar diferentes configuraciones de interconexión entre los ePs para
buscar mejoras en el tiempo empleado en realizar las operaciones.

5.4. Modulo de decisión de coincidencias
La construcción del módulo se consideró para determinar cuál de las coincidencias

encontradas en la matriz de procesamiento es la más larga y, por tanto, la más relevante
para la compresión de datos. A continuación, se presentan las características técnicas y los
detalles de implementación de este módulo:

CAPÍTULO 5. CONSTRUCCIÓN 67

Comparación de longitudes: El módulo toma las longitudes de coincidencias
parciales y utiliza un buffer para almacenarlas de forma temporal y de él, las compara
para encontrar la más larga. Utiliza operaciones lógicas para determinar el índice y
la longitud de la coincidencia más larga dentro de la ventana deslizante.

Asignación de índices y longitudes: Se utilizó un conjunto de operadores ter-
narios para evaluar y asignar el índice correspondiente a la coincidencia más larga
basado en la información procesada por elementos anteriores en la cadena de proce-
samiento.

Sincronización y flujos de control: Se construyó la lógica de control para manejar
estados como IDLE, SEARCH y OUTPUT mediante una máquina de estados para
gestionar el flujo de datos y las transiciones entre diferentes fases de procesamiento.

5.5. Generador de código comprimido
Este módulo es responsable de recibir las decisiones sobre las coincidencias más largas

del módulo de decisión de coincidencias y convertirlas en un formato de salida comprimido
que encapsula la posición y la longitud de la coincidencia. Se construyo con las dimensiones
suficientes para poder manejar las entradas de longitud y posición; de ellas genera código
comprimida realizando una concatenación entre los datos de entrada y generar el código
comprimido de 16 bytes. Cabe aclarar que este módulo genera una trama de datos compri-
midos, a él se pueden conectar diversas interfaces que deben generar las tramas adecuadas,
ya sea para agregar redundancia para posterior verificación o adecuación a dimensiones
requeridas. Se realizo con este fin en mente para no limitar la interfaz a tramas específicas
de algún estándar o para cierta aplicación solamente.

Capítulo 6

Pruebas

Las pruebas se realizaron enfocadas en la verificación de la arquitectura en dos ver-
tientes, considerando la simulación y la implementación en la tarjeta de desarrollo FPGA.
Se utilizaron archivos de distintos corpus, comparando los resultados obtenidos con los
del compresor ZIP nativo disponible en un sistema Android 13 y 14 respectivamente. A
continuación, se detallan los aspectos relevantes.

6.1. Conjunto de datos
Resulta complejo determinar con precisión qué conjunto de datos será el más adecuado

para conformar un corpus de evaluación. No obstante, existen ciertos criterios que son
deseables al momento de su selección [80]:

Representatividad: El corpus debe reflejar adecuadamente los tipos de archivos
que un sistema de compresión probablemente procesará en el futuro. Esto implica la
inclusión de una variedad de formatos y contenidos heterogéneos.

Disponibilidad: El corpus debe ser de fácil acceso para la comunidad. La forma
más eficaz de lograr esto es buscarlo mediante plataformas en línea.

Dominio público: El corpus debe contener únicamente material de dominio público.
Esto excluye una gran cantidad de archivos reales de interés, como imágenes o videos
completos, debido a la presencia inevitable de contenido con derechos de propiedad
intelectual.

Tamaño adecuado: El corpus no debe ser más grande de lo necesario. Un tamaño
excesivo implicaría mayores costos de almacenamiento, transmisión y procesamiento,
lo que podría dificultar su distribución y uso.

Percepción de validez y utilidad: Para tener una adopción generalizada, el corpus
debe ser percibido como una herramienta válida y útil. Para ello, es fundamental que
contenga tipos de archivos comúnmente utilizados y que el procedimiento de selección
esté claramente documentado y publicado.

68

CAPÍTULO 6. PRUEBAS 69

Validez y utilidad: Más allá de la percepción, el corpus debe permitir evaluar de
manera precisa el desempeño de los algoritmos de compresión. Es decir, los resultados
obtenidos al procesar los archivos del corpus deben correlacionarse con el rendimiento
que dichos algoritmos presentan en aplicaciones reales.

Con ello se contempló la utilización de archivos de diferentes conjuntos de datos estanda-
rizados para pruebas de compresión sin perdidas, siendo principalmente tres. Los cuales
son:

Calgary Corpus [81], se creó en 1987 como un conjunto estándar para la evalua-
ción de algoritmos de compresión de datos. Busca cubrir distintos tipos de contenido,
incluidos texto plano, código fuente, archivos binarios y datos estructurados. Su di-
seño buscaba ofrecer un conjunto compacto pero diverso, permitiendo evaluar tanto
la eficiencia de compresión como el rendimiento computacional de distintas técnicas.
Aunque fue ampliamente utilizado en la validación de algoritmos clásicos como Huff-
man, LZW y variantes de LZ77, actualmente se considera limitado por su reducido
tamaño y su falta de representación de formatos modernos como XML. Aun así,
sigue siendo utilizado como referencia histórica y para establecer comparaciones con
resultados previos, por ello se considera importante evaluar la arquitectura con este
conjunto de datos.

Canterbury Corpus [38], fue desarrollado en 1997 por el Departamento de Ciencias
de la Computación de la Universidad de Canterbury, como un reemplazo técnico más
adecuado al Calgary Corpus. Este conjunto contiene 11 archivos seleccionados para
representar de manera más precisa los patrones de datos presentes en aplicaciones
reales. Incluye textos literarios, documentos estructurados y archivos binarios. A
diferencia de su predecesor, el Canterbury Corpus incorpora datos más variados y
con estructuras más representativas del uso real, lo que permite un análisis más fiable
del comportamiento de algoritmos de compresión en entornos prácticos. Su adopción
en investigaciones ha contribuido a mejorar la robustez entre esquemas como BWT,
PPM, LZMA o codificación aritmética, se considera una referencia obligatoria para
pruebas en contextos más realistas.

Silesia Corpus [82], desarrollado en el año 2003 es también un conjunto estándar
para realizar pruebas de funcionamiento con este tipo de datos, el cual abarca una
gama diversa de tipos de datos, incluidos textos literarios, bases de datos científicas,
ejecutables, imágenes médicas y documentos estructurados (XML), con tamaños en-
tre 6 MB y 51 MB. Este corpus refleja patrones de uso actuales y fue concebido para
probar compresores sobre datos representativos del entorno real, excluyendo multi-
media con compresión con pérdida. Su estructura permite comparar eficientemente
el desempeño de algoritmos, en especial en escenarios de grandes volúmenes de datos
y aplicaciones modernas como bases de datos, software complejo y documentación
técnica. En resumen, el Silesia Corpus es una colección de archivos de diversos for-
matos que representan diferentes tipos de datos, incluyendo texto, imágenes, código
ejecutable y datos estructurados. Aunque sus tamaños no son representativos de apli-
caciones embebidas típicas, este corpus permite obtener una estimación confiable del

CAPÍTULO 6. PRUEBAS 70

rendimiento de algoritmos de compresión frente a flujos de datos reales y variados.
Se selecciono porque es comúnmente utilizado para comparar algoritmos como LZ77,
LZ4 y sus variantes.

6.2. Dispositivos a comparar
Una vez configurado el entorno de simulación con un reloj de 200 MHz en el testbench,

se definieron los dispositivos de referencia utilizados para la comparación del rendimiento
de compresión. Dado que la arquitectura propuesta está orientada a ser una solución
de compresión viable en dispositivos móviles, se eligió para el escenario de evaluación la
comparación con equipos que representan dos segmentos distintos del mercado Android en
la actualidad. En primer lugar, se seleccionó un dispositivo de gama media representativo
del perfil de usuario promedio en México. Para este propósito, se utilizó un celular con
procesador Mediatek MT8788V Octa-core (4x2.0 GHz Cortex-A73 & 4x2.0 GHz Cortex-
A53), almacenamiento interno UFS 2.1 que tiene velocidades máximas de lectura de 860
MB/s y de escritura de 255 MB/s, cuenta también con 8Gb de memoria RAM LPDDR4X
a 1800MHz. Este modelo fue elegido por su precio accesible y sus características contenidas
y congruentes con los terminales más distribuidos en la población mexicana, de acuerdo
con datos recientes [83].

Respecto al dispositivo que actuara como gama alta, se consideró el Samsung Ga-
laxy S24 Ultra, equipado con el procesador Qualcomm Snapdragon 8 Gen 3 for Galaxy
(1×3.39GHz Cortex-X4 + 5×3.1GHz Cortex-A720 + 2×2.3GHz Cortex-A520) y 12GB de
RAM LPDDR5X. Este dispositivo representa el estándar actual de alto rendimiento en
Android y ofrece una referencia tecnológica de última generación, tanto en capacidad de
procesamiento como en velocidad de acceso a memoria y almacenamiento UFS 4.0 que
permite velocidades teóricas de lectura secuencial de hasta 4300 MB/s y velocidades de
escritura secuencial de hasta 4000 MB/s. La comparación con ambos dispositivos busca
tener resultados objetivos: por un lado, evaluando la competitividad de la arquitectura
propuesta frente a la capacidad de procesamiento de un dispositivo promedio; y por otro,
examinando su eficiencia en relación con un dispositivo gama alta. Con ello se busca que
las conclusiones derivadas de esta investigación sean técnicamente representativas y com-
paradas con entornos reales de uso.

La simulación fue ejecutada en Vivado para obtener el rendimiento estimado en hardwa-
re (frecuencia de 200MHz), mientras que la compresión ZIP se realizó usando la aplicación
de archivos integrada de Android [84] mediante la aplicación Termux [85] y medida con
hyperfine [86].

6.2.1. Consideraciones sobre el tiempo medido en dispositivos An-
droid

Al analizar los resultados obtenidos es importante tener en cuenta respecto al tiempo
de procesamiento; que en el entorno Android, incluso en dispositivos de gama alta como el
Samsung S24 Ultra, la ejecución de tareas de compresión involucra múltiples subsistemas
y capas de abstracción que repercuten en el desempeño medido.

CAPÍTULO 6. PRUEBAS 71

Para sustentar y contextualizar los tiempos observados en los resultados, se conside-
raron evaluaciones realizadas en laboratorio por los fabricantes, perfiles de rendimiento
y documentación oficial. Donde para evaluar el dispositivo de gama alta, TERMINAR
realizaron la ejecución del algoritmo Deflate (Zlib 1.2.11) [87], implementado en CC++
mediante Android NDK y ejecutado con acceso a cuatro núcleos del Snapdragon 8 Gen
3, se registró un consumo promedio de 3.2 W. Las pruebas se realizaron sobre archivos
ASCII de 10 Mb, donde se midió un tiempo promedio de compresión de 860 ms, es decir,
una tasa de 8.6 ms/Mb. Sin embargo, este valor no representa únicamente el tiempo neto
de cómputo del algoritmo [88].

El sistema operativo Android prioriza tareas críticas de fondo y de red, lo cual afecta la
disponibilidad continua del procesador. Además, el sistema debe gestionar la lectura desde
almacenamiento no volátil (UFS 4.0), los accesos a memoria del espacio de usuario, y la
sincronización multihilo mediante semáforos y objetos JNI. Cada una de estas capas in-
troduce latencias adicionales no despreciables. La lectura y escritura secuencial se realizan
con latencias inferiores a 0.5 ms/MB, pero el cruce de contexto entre espacio de usuario y
kernel, junto con la sincronización de hilos, puede añadir entre 0.5 y 2 ms por transacción.

Estos factores, medidos con herramientas como Trepn Profiler [7] y confirmados por
reportes técnicos como los de AnandTech, evidencian que el tiempo total de compresión
incluye múltiples elementos externos al algoritmo en sí. En consecuencia, cualquier com-
paración directa con arquitecturas dedicadas debe considerar estas restricciones inherentes
al entorno de ejecución en dispositivos Android, en la tabla 6.1 se presenta un resumen de
las características ofrecidas por las fuentes citadas.

Tabla 6.1: Resumen de rendimiento y consumo en Samsung S24 Ultra, basado en [7].
Parametro Valor medido
Consumo promedio en compresión 3.2 W
Latencia de lectura UFS 4.0 <0.5 ms/Mb
Retardo por semáforos y sincronización 0.5 – 2.0 ms
Tiempo total de compresión de 10 MB 860 ms
Velocidad promedio de compresión 8.6 ms/Mb
Consumo pico en carga completa 24 W

Como nota final respecto a estos datos que provee el fabricante, son valores ideales
en entornos controlados y no demuestran el comportamiento real en un dispositivo de
uso común, considerando ello, el tiempo medido en el dispositivo en pruebas reales y con
diferentes herramientas difiere ligeramente.

6.3. Pruebas en simulación
Para validar el correcto funcionamiento de la arquitectura propuesta, se ha llevado a

cabo la etapa de simulación utilizando el entorno de desarrollo proporcionado por AMD,
Vivado. Siendo parte de las dos vertientes utilizadas para la verificación de la arquitectura.
Ambas formas se basan en la metodología planteada en este trabajo. Las pruebas en
simulación se han orientado a evaluar el comportamiento y la eficiencia de la arquitectura.

CAPÍTULO 6. PRUEBAS 72

Para ello, en primer lugar, se configuro el entorno de simulación de acuerdo a las
características proporcionadas por la tarjeta de desarrollo utilizada. con la frecuencia de
oscilación del cristal (que actúa como reloj) configurada en el caso ideal con velocidad de
funcionamiento de 200MHz.

6.3.1. Conversión de frecuencia a período

Dada una frecuencia:

f = 200MHz

El período T se obtiene como el inverso de la frecuencia:

T =
1

f

Sustituyendo el valor:

T =
1

200× 106
= 5ns

Por lo tanto, para simular un reloj de 450MHz, se requiere un ciclo completo de apro-
ximadamente:

T = 2.222 ns

Y cada medio ciclo (para la generación del reloj en Verilog) corresponde a:

Tmedio =
T

2
=

5

2
= 2.5 ns

6.3.2. Comparativa con Calgary Corpus

La tabla 6.2 presenta los resultados comparativos de compresión para distintos archivos
del Calgary Corpus entre los tres dispositivos: Android de gama media y alta, y la arqui-
tectura propuesta. Se analizan dos aspectos principales: la tasa de compresión obtenida (la
cual es exactamente la misma para los dos dispositivos Android, ya que se utiliza el mismo
programa en la misma versión)y el tiempo de procesamiento requerido para cada archi-
vo, cabe mencionar que la arquitectura propuesta está diseñada para manejar únicamente
texto plano, por lo que solo se utilizaran este tipo de archivos del corpus para realizar las
pruebas.

En cuanto a la tasa de compresión, se observa que la arquitectura supera de forma teóri-
ca a los dispositivos Android en la mayoría de los casos. Por ejemplo, en el archivo ’book1’,
la arquitectura alcanza una tasa de compresión de 20.259, mientras que en Android solo se
logra una relación de 2.45, lo cual representa una tasa de compresión 8 veces mayor. Esta
tendencia se repite en archivos como ’bib’, ’book2’, ’news’ y ’paper2’, donde la compresión
alcanzada por la arquitectura basada en FPGA oscila entre 3.4 y 4.9, valores superiores
a los obtenidos por los dispositivos Android. Incluso en archivos de menor tamaño, como
’progc’, ’paper1’ o ’trans’, la tasa lograda por la arquitectura es significativamente mayor,

CAPÍTULO 6. PRUEBAS 73

lo que refleja la capacidad del sistema para adaptarse a diferentes volúmenes y estructu-
ras de datos. Solo en casos particulares como ’progl’ y ’progp’, Android alcanza una tasa
de compresión ligeramente superior (4.37 y 4.34 frente a 4.02 y 3.685 respectivamente),
aunque la diferencia no es crítica desde el punto de vista de eficiencia general.

Respecto al tiempo de procesamiento, los resultados muestran una ventaja abrumadora
de la arquitectura FPGA frente a los sistemas Android, tanto de gama media como alta.
Pero, estos valores no son completamente confiables debido a múltiples factores inherentes
al entorno de ejecución, que se consideraron con anterioridad. Teniendo en cuenta ello, los
resultados validan que la arquitectura propuesta no solo logra mejores tasas de compre-
sión para la mayoría de los casos, sino que también reduce en cierta medida los tiempos de
procesamiento. Esta mejora está directamente relacionada con el diseño orientado a hard-
ware, el uso de una matriz sistólica y la capacidad de procesamiento paralelo que permite
alcanzar niveles de rendimiento superiores a los de procesadores de uso general, incluso en
dispositivos móviles de alto desempeño.

Tabla 6.2: Comparación Calgary Corpus en simulación, elaboración propia.

Archivo Tipo Tamaño
[Bytes]

Tasa
com-
presión
Android

Tasa com-
presión
Arquitectu-
ra

Tiempo
gama me-
dia [ms]

Tiempo
gama alta
[ms]

Tiempo ar-
quitectura
[ms]

bib ASCII en forma-
to UNIX “refer” 111,261 3.16 4.30 43.5 12.5 1.301

book1 ASCII sin for-
mato 768,771 2.45 20.259 235.7 56.2 1.917

book2 ASCII en forma-
to UNIX "troff" 610,856 2.96 4.898 150 42.9 6.291

news ASCII: archivo
por lotes 377,109 2.60 4.79 89.3 30.9 3.958

paper1 Formato
"troff"de UNIX 53,161 2.84 3.752 34.5 13.3 0.7151

paper2 Formato
"troff"de UNIX 82,199 2.75 4.165 35.7 17.4 0.9981

progc Código fuente en
C 39,611 2.95 3.410 26.0 9.9 0.5854

progl Código fuente en
Lisp 71,646 4.37 4.02 31.5 13.6 0.8989

progp Código fuente en
Pascal 49,379 4.34 3.685 19.3 10.9 0.6776

trans Caracteres AS-
CII y de control 93,695 4.90 4.265 32.3 16.3 1.1046

6.3.3. Comparativa con Canterbury Corpus

Los resultados obtenidos en la tabla 6.3 muestran la comparación entre la arquitec-
tura propuesta y dos dispositivos Android (gama media y gama alta) aplicados sobre el
Canterbury Corpus. Este conjunto de datos incluye archivos de diversos contextos como
literatura, código fuente y escritura técnica, permitiendo evaluar el desempeño del sistema
con diferentes condiciones.

En términos de tasa de compresión, la arquitectura basada en FPGA logra resultados
superiores en la mayoría de los casos. Por ejemplo, para archivos de texto general como
alice29.txt y asyoulik.txt, se alcanzan relaciones de compresión de 4.62 y 4.39 respec-
tivamente, frente a 2.79 y 2.55 en los dispositivos Android. Este patrón también se observa
en archivos de mayor volumen como lcet10.txt y plrabn12.txt, donde la arquitectura

CAPÍTULO 6. PRUEBAS 74

obtiene tasas de 4.93 y 4.99, mejorando considerablemente respecto a los valores registra-
dos en Android, que no superan 3.0. Estas diferencias reflejan la capacidad del hardware
especializado para explotar la redundancia estructural y semántica presente en archivos
extensos mediante procesamiento paralelo.

Sin embargo, en archivos pequeños o con bajo nivel de repetición, como cp.html,
fields.c, grammar.lsp y xargs.1, Android obtiene una tasa de compresión superior. En
estos casos, la sobrecarga inicial de la arquitectura y el menor grado de repetición afectan
la eficiencia global. Por ejemplo, fields.c y xargs.1 muestran tasas de 1.91 y 1.14 frente
a 3.40 y 2.23 en Android, respectivamente.

Respecto al tiempo de ejecución, la arquitectura supera a ambas variantes de Andro-
id en todos los casos, se deben considerar las demoras involucradas en los dispositivos
Android descritas en el apartado anterior. Para archivos grandes como plrabn12.txt y
lcet10.txt, se obtienen tiempos de compresión de 4.88 ms y 4.37 ms respectivamente,
comparados con más de 80 ms en dispositivos Android de gama media y cerca de 40 ms en
dispositivos de gama alta. En archivos de menor tamaño, la arquitectura logra compresión
en menos de 0.5 ms, como se observa en grammar.lsp (0.169 ms) y fields.c (0.294 ms),
lo cual evidencia la eficiencia del flujo de datos y la baja latencia interna del sistema.

En conjunto, los resultados son consistentes con el corpus presentado con anterioridad,
demuestran que la arquitectura propuesta es más rápida y logra una mayor compresión
en la mayoría de los casos. Las pocas excepciones donde la tasa de compresión no es
óptima corresponden a entradas reducidas o no redundantes, pero incluso en estos casos,
la velocidad de procesamiento es superior a la observada en plataformas de uso general,
validando el enfoque de diseño especializado y paralelo implementado en hardware.

Tabla 6.3: Comparación Canterbury Corpus en simulación, elaboración propia.

Archivo Tipo Tamaño
[Bytes]

Tasa com-
presión
Android

Tasa com-
presión
Arquitectu-
ra

Tiempo
gama me-
dia [ms]

Tiempo
gama alta
[ms]

Tiempo ar-
quitectura
[ms]

alice29.txt Texto en inglés 152,089 2.79 4.62 57.8 13.1 1.6629
asyoulik.txt Shakespeare 125,179 2.55 4.39 60.2 15.5 0.1531
cp.html HTML 24,603 3.02 2.86 23.2 11.6 0.4323
fields.c Código en C 11,150 3.40 1.91 21.7 11.5 0.294815
grammar.lspCódigo en LISP 3,721 2.68 1.12 20.8 8.9 0.169225

lcet10.txt Escritura técni-
ca 426,754 2.94 4.93 81.6 40.6 4.3756

plrabn12.txtPoesía 481,861 2.47 4.99 161.9 48.7 4.886585

xargs.1 Página de ma-
nual GNU 4,227 2.23 1.14 19.5 11.8 0.1871

CAPÍTULO 6. PRUEBAS 75

6.3.4. Comparativa con Silesia Corpus

La tabla 6.4 presenta la comparación entre la arquitectura los dispositivos Android uti-
lizando archivos representativos del Silesia Corpus, conocido por su diversidad en tamaño
y contenido estructural. Se evalúan tanto la tasa de compresión obtenida como el tiempo
de procesamiento requerido para cada archivo.

En cuanto a la tasa de compresión, la arquitectura logra resultados superiores en la
mayoría de los archivos, con valores que alcanzan 5.150 en el archivo Dickens, 5.129 en
Reymont y 5.144 en Webster. Estos resultados reflejan la eficiencia del procesamiento pa-
ralelo y la estructura optimizada de la matriz sistólica. Solo en archivos como Nci y Xml
la relación es menor en comparación con los dispositivos Android, donde se registran tasas
de 10.486 y 7.722 respectivamente frente a 5.585 y 5.048 en la arquitectura propuesta. Sin
embargo, es importante señalar que este tipo de archivos, particularmente bases de datos
o estructuras XML altamente repetitivas, pueden beneficiarse más de algoritmos especí-
ficos aplicados por bibliotecas del sistema operativo, aunque con restricciones temporales
significativas.

En términos de tiempo de procesamiento, continua la tendencia de la arquitectura
propuesta en todos los casos. El archivo Webster, con más de 41 MB de datos, es procesado
en 405.462 ms por la arquitectura, mientras que los dispositivos Android de gama media
y alta requieren 3657 ms y 1266 ms respectivamente. De manera similar, Reymont es
procesado en apenas 65.192 ms frente a 898.1 ms y 329.7 ms, y Dickens se comprime en
solo 100 ms en contraste con los 1474 ms y 502.3 ms observados en dispositivos Android.
Esta reducción se mantiene también en archivos menores como Xml, donde el tiempo de
compresión es de 53.391 ms en la arquitectura.

Es importante tener claro que estos resultados son considerando las limitaciones estruc-
turales y operativas de los dispositivos Android. Todo esto influye en la medición real del
tiempo de compresión, aumentando la latencia de forma evidente en el tiempo empleado
para realizar la operación.

En contraste, la arquitectura especializada en hardware opera con un flujo de datos
continuo, control completo del entorno de ejecución, y una configuración paralela que
elimina los cuellos de botella comunes en sistemas generales. Esto permite una medición
precisa del rendimiento y una ejecución eficiente tanto en términos de velocidad como de
compresión alcanzada, validando la viabilidad de la solución propuesta para aplicaciones
que requieren alto rendimiento y procesamiento en tiempo real.

Tabla 6.4: Comparación Silesia Corpus en simulación, elaboración propia.

Archivo Tipo Tamaño
[KBytes]

Tasa com-
presión
Android

Tasa com-
presión
Arquitectu-
ra

Tiempo
gama me-
dia [ms]

Tiempo
gama alta
[ms]

Tiempo ar-
quitectura
[ms]

Dickens Texto en in-
glés 10,193 2.634 5.150 1474 502.3 100

Nci Base de da-
tos 33,554 10.486 5.585 1097 358.7 334.954

Reymont Documento
de texto 6,628 3.565 5.129 898.1 329.7 65.192

Webster HTML 41,459 3.397 5.144 3657 1266 405.462
Xml HTML 5,346 7.722 5.048 314.7 122.3 53.391

CAPÍTULO 6. PRUEBAS 76

6.4. Pruebas en tarjeta de desarrollo
Para la ejecución de pruebas sobre la tarjeta de desarrollo seleccionada, es necesario

tener en cuenta variables adicionales, para ello se consideró establecer un método de co-
municación con el mundo real que permitiera la entrada y salida de datos. Dado que el
enfoque principal de la investigación no recae en esta capa de integración, se optó por
una solución suficientemente adecuada: optando por el uso de una tarjeta de memoria SD
como medio no volátil de transferencia de datos, también es de relevancia describir como
se deben configurar la frecuencia de los relojes que se requieran en la tarjeta de desarrollo
seleccionada, a diferencia de tarjetas de desarrollo más sencillas, en esta se utilizan relojes
diferenciales, se explica brevemente este aspecto.

6.4.1. Configuración y uso de relojes diferenciales en FPGA

[89] El diseño implementado utiliza los recursos dedicados de reloj disponibles en los
FPGAs de la familia 7-Series de AMD, específicamente mediante el bloque PLL (Phase-
Locked Loop), el cual permite generar señales de reloj derivadas a partir de una entrada
base, con control preciso sobre frecuencia y fase. Esta capacidad se utilizó para poder tener
acceso al almacenamiento de la tarjeta SD, la cual se protocolo trabaja a 50Mhz.

El bloque PLL recibe una señal de entrada de 200MHz, proveniente de un oscilador
externo conectado a un pin de reloj dedicado. Esta señal se enruta a través de un buffer
global (BUFG) hacia el PLL, para tener una baja dispersión de fase y distribución uniforme
del reloj. En este diseño, se requiere generar una señal de 50MHz para operar en modo
SPI estándar con la tarjeta microSD, además de otras señales sincronizadas para distintos
bloques del sistema.

La frecuencia de salida deseada se calcula mediante los parámetros internos del PLL
según la ecuación:

FOUT =
FIN × CLKFBOUT_MULT

DIVCLK_DIVIDE× CLKOUTx_DIVIDE
Para este caso, con una entrada de FIN = 200MHz y una salida requerida de 50MHz,

una configuración típica sería:

CLKFBOUT_MULT = 10

DIVCLK_DIVIDE = 1

CLKOUT0_DIVIDE = 40

Con esta configuración, se obtiene:

FOUT =
200× 10

1× 40
= 50MHz

Esta salida es enviada a los módulos que controlan la tarjeta microSD, incluyendo
el controlador FAT y el lector de archivos (se describen más adelante). Adicionalmente,
se pueden configurar otras salidas del PLL, como CLKOUT1, CLKOUT2, etc., para generar

CAPÍTULO 6. PRUEBAS 77

otras frecuencias requeridas por bloques auxiliares como UART, ILA o temporizadores de
precisión.

El bloque PLL también se realimenta mediante un bucle cerrado utilizando CLKFBIN
conectado desde CLKFBOUT, lo que estabiliza la señal de salida y reduce el jitter. Del uso
del buffer global posterior a la salida (BUFG) se obtiene una distribución de la señal de
50MHz hacia todos los componentes que la requieren, como se muestra en la figura 6.1.

Figura 6.1: Diagrama de funcionamiento PLL, elaboración propia.

Teniendo configurando el reloj diferencial, el sistema debe contar con un origen de datos
desde el cual se obtiene el archivo de texto plano. La arquitectura propuesta opera sobre
flujos de datos codificados en ASCII extendido, por lo que se requiere encapsular dichas
secuencias en archivos que permitan una lectura secuencial sin estructuras de cabecera,
como es el caso de los archivos de texto plano. Debido a esta ausencia de encabezado, el
acceso se complica, ya que se debe tener algún tipo de controlador de acceso a sistema
de archivos; este se realizó para poder acceder a particiones FAT16 y FAT32, se menciona
brevemente el funcionamiento de esta tecnología y como se diseñó para las pruebas.

6.4.2. Tarjeta SD

Dado que la tarjeta de desarrollo incluye múltiples periféricos de entrada/salida, se
seleccionó la interfaz de tarjeta SD por su funcionalidad para las pruebas necesarias. [8],
[3] La interfaz más utilizada para la comunicación con tarjetas SD es el bus SD. Tanto la
tarjeta SD como la SD comparten las mismas funciones lógicas, por lo tanto, se utiliza el
termino SD, haciendo referencia indistintamente a SD; se diferencian únicamente física-
mente por su tamaño físico y forma (ver figura 6.2). La asignación de pines en modo SPI
es equivalente para ambos formatos y se muestra en la siguiente figura.

Figura 6.2: Definición de pines SPI para tarjeta SD (izquierda) y SD (derecha), basado en
[3].

Para habilitar su uso en el entorno, se implementó la comunicación mediante el pro-
tocolo SD nativo, el cual es uno de los modos estandarizados soportados por este tipo de
dispositivos de almacenamiento. En la siguiente subsección se menciona los aspectos de
mayor relevancia del protocolo utilizado.

CAPÍTULO 6. PRUEBAS 78

Protocolo de comunicación de tarjetas SD

[8] En el modo SD nativo, el bus puede operar en configuración de 1, 4 u 8 bits
(aunque la mayoría de las tarjetas estándar operan con 1 o 4 bits), y la transferencia de
datos se sincroniza mediante una señal de reloj común suministrada por el anfitrión. Las
transacciones de bus en este modo utilizan un protocolo de comandos de bajo nivel, donde
las instrucciones (CMD), respuestas (RSP), y bloques de datos se transmiten en forma de
tramas predefinidas.

Cada comando está compuesto por:

Un bit de inicio (start bit)

Un bit de dirección de transmisión (host a tarjeta)

Un campo de comando de 6 bits

Un argumento de 32 bits

Un código de verificación CRC7 de 7 bits

Un bit de fin de transmisión (end bit)

Las respuestas, por su parte, pueden tener formatos R1, R2, R3, R6, etc., cada uno con
campos específicos según la operación. Por ejemplo, la respuesta R1 proporciona informa-
ción de estado; la R2 es extendida (136 bits) para leer el registro CID/CSD; la R3 devuelve
el OCR (Operational Conditions Register), sin código CRC.

El protocolo también especifica los mecanismos para transferencias de datos en bloques,
con posibilidad de uso de tokens de inicio, tokens de error, y mecanismos de interrupción.
En modo 4-bit, el rendimiento puede alcanzar hasta 25 MB/s en tarjetas estándar y más
en tarjetas UHS (Ultra High Speed).

Este modo requiere un controlador SD especializado, ya que la implementación involu-
cra temporización estricta, reconocimiento de comandos, sincronización de datos y control
de errores, como CRCs automáticos y validación de secuencias. Considerando los modos
de operación de la tarjeta SD, en la tabla 6.5 se muestran los modos admitidos, donde se
verifica que se diferencian principalmente por velocidad requerida por el dispositivo donde
se emplee la tarjeta SD y por ello se diseña este apartado siguiendo el modo SD a diferencia
de SPI, que es más sencillo de implementar, pero degrada la velocidad de transferencia y
se consideraría un limitante para medir el rendimiento de la arquitectura propuesta.

Este procedimiento es necesario para preparar la tarjeta SD y que responda correcta-
mente a las operaciones posteriores, en la siguiente figura se ilustra la escritura de múltiples
bloques bajo el estándar SD. Se aprecia que los comandos siempre los debe iniciar el anfi-
trión, en este caso se pueden desencadenar presionando un botón de la FPGA para iniciar
el proceso de lectura del archivo a comprimir.

La forma en que se diseñó la arquitectura para manejar la tarjeta SD es separando
en tres módulos este apartado, se muestra en la figura 6.4, el primero es una máquina de
estados para su inicialización, el módulo para manejar los comandos soportados y como
tal el protocolo. Se muestra el diagrama de bloques con las principales señales esperadas

CAPÍTULO 6. PRUEBAS 79

Tabla 6.5: Modos de operación disponibles en tarjetas SD, basado en [8].
Modo Número de Líneas Descripción

Modo SPI 4 (CS, MOSI, MISO,
CLK)

Comunicación serial simple, ampliamente
soportado, ideal para plataformas embe-
bidas.

Modo SD 1-bit 6 (CLK, CMD, DAT0,
VDD, VSS1, VSS2)

Permite mayor velocidad que SPI, requie-
re protocolo más complejo.

Modo SD 4-bit
9 (CLK, CMD,
DAT0–DAT3, VDD,
VSS1, VSS2)

Utilizado en dispositivos de alto ren-
dimiento como cámaras digitales y
smartphones.

Figura 6.3: Escritura de múltiples bloques hacia tarjeta SD, basado en [4].

u obtenidas de cada uno de los módulos que conforma este apartado para conectar la
arquitectura principal con el exterior, se requieren diversas señales de cada tipo en realidad,
para comprobación, bloques de datos, banderas, etc.

Figura 6.4: Arquitectura para manejar tarjeta SD, basado en [4].

Una tarjeta SD proporciona un espacio de almacenamiento lineal dividido en sectores
de 512 bytes. Cada sector se direcciona secuencialmente: el sector 0 ocupa el rango de
direcciones 0x00000000 a 0x000001FF, el sector 1 de 0x00000200 a 0x000003FF, y así
sucesivamente. Las operaciones de lectura y escritura se realizan directamente sobre estos
sectores. [90] Para organizar particiones y archivos sobre esta estructura lineal, se utilizan
sistemas de archivos. Los más comunes en tarjetas SD son FAT16 y FAT32, los cuales defi-
nen estructuras de metadatos que permiten el almacenamiento y recuperación de archivos
en sectores potencialmente no contiguos.

La funcionalidad para acceder a archivos en una tarjeta SD a través del modo SD puede
resumirse en dos módulos:

CAPÍTULO 6. PRUEBAS 80

Control del bus SD que maneja al protocolo SPI definido específicamente para tar-
jetas SD, permitiendo la selección y lectura de sectores específicos.

Interpretación del sistema de archivos sobre los sectores leídos. Dada una ruta o
nombre de archivo, se deben localizar los sectores asociados, calcular su tamaño y
gestionar su posible fragmentación en bloques dispersos. Por lo tanto, la FPGA debe
poder gestionar este acceso, abstrayendo estas complejidades y entregar los datos de
forma continua al usuario, independientemente de su disposición física.

Ahora se debe pasar al siguiente nivel de la capa de abstracción para poder acceder al
archivo de texto plano, el sistema de archivos.

6.4.3. Implementación del acceso al sistema de archivos FAT y
FAT16

La arquitectura desarrollada para la lectura de archivos desde una tarjeta SD imple-
menta una interfaz compatible con los sistemas de archivos FAT16 y FAT32, basado en
[91, 92, 93, 94]. El módulo sd_file_reader, diseñado para la FPGA, contiene una má-
quina de estados finitos (FSM) que gestiona el proceso de inicialización de la tarjeta, la
detección del tipo de sistema de archivos y la lectura secuencial de los datos contenidos en
un archivo objetivo.

En la figura 6.5 se muestra la maquina generada para poder leer archivos desde la
tarjeta SD en formato FAT 16 y 32. Inicialmente, el sistema accede al Master Boot Record
(MBR) buscando el indicador de sector de arranque válido (firma 0x55AA en los bytes
0x1FE-0x1FF), tras lo cual, si se detecta que el sector actual no es el DOS Boot Record
(DBR), se utiliza la dirección lógica de bloque (LBA) obtenida del MBR para acceder
al primer sector válido del sistema de archivos. En este punto, se analizan los campos
estándar del DBR, tales como el tamaño del sector, el número de sectores reservados.

Cuando se determina que el sistema es FAT16, el sistema calcula el número de sectores
asignados al directorio raíz, y accede secuencialmente a cada entrada de 32 bytes hasta
encontrar la coincidencia con el nombre del archivo buscado. Utilizando un mecanismo de
comparación entre el nombre recibido como parámetro del módulo y el nombre asignado
desde la estructura del directorio raíz, aplicando conversión a mayúsculas para garantizar
coincidencias insensibles, como lo exige el estándar FAT.

El campo de inicio de clúster (offsets 0x1A y 0x1B de la entrada de directorio) se
interpreta para calcular el sector físico donde comienza el archivo, sumando el número
de clúster inicial al sector base del área de datos, teniendo en cuenta que los primeros
dos clústeres del sistema están reservados (inicio en clúster 2). Posteriormente, se accede
de manera secuencial a los sectores correspondientes a ese clúster, utilizando la variable
cluster_sector_offset para gestionar la lectura dentro de cada clúster. Cuando se al-
canza el final de un clúster, se accede a la tabla FAT, para leer la entrada correspondiente y
determinar el número del siguiente clúster en la cadena, hasta detectar el final del archivo
mediante un valor reservado como 0xFFF0–0xFFFF (para FAT16).

En FAT32, el procedimiento es similar, pero emplea clústeres de mayor tamaño y se
accede considerando entradas de 32 bits, además de utilizar un campo explícito que define

CAPÍTULO 6. PRUEBAS 81

el clúster raíz, en lugar de una región separada de directorio raíz. En ambos casos, el
sistema implementa control por estados y registros auxiliares para determinar el clúster
actual, el desplazamiento interno, la posición en la tabla FAT, y el número de sector a
acceder, gestionando condiciones como fin de archivo, archivo no encontrado o sectores
inválidos.

La lectura de los datos del archivo se realiza sincronizada al reloj del sistema y con una
señal de validación, permitiendo que cada byte leído del archivo sea extraído secuencial-
mente para su posterior procesamiento. Esta implementación busca compatibilidad con las
especificaciones FAT sin necesidad de un sistema operativo embebido, permitiendo acceso
directo y eficiente a archivos almacenados en tarjetas SD bajo sistemas FAT, tanto en
simulación como en entornos físicos a través de controladores SPI o SD nativos.

Figura 6.5: Maquina finita de estados para manejar tarjeta SD, elaboración propia.

CAPÍTULO 6. PRUEBAS 82

Una vez definida la forma en la cual se debe diseñar la lógica para poder acceder al
dispositivo que almacena el texto de prueba, se programó la tarjeta FPGA, considerando
los LED como bandera de los procesos involucrados. Internamente el diseño se configuro
para ser lo más depurable posible en cada paso. En la figura 6.6 se observa la codificación
de los resultados de la detección de la tarjeta SD mediante la extensión de depuración
fabricada para este trabajo, que funciona conectada en el puerto de expansión proporcio-
nado por la FPGA, asignando letras a cada conjunto de 4 bits para una fácil ubicación.
Esta codificación se interpreta de la siguiente manera, considerando el orden de bits Least
Significant Bit (LSB) primero:

En los bits 1 y 0 de la letra A se encuentra el tipo de tarjeta detectada. El valor 2
(en binario) indica que la tarjeta es del tipo SD versión 2.0 (SDv2).

Los bits 3 y 2 de la letra A indican el tipo de sistema de archivos. En este caso, el
valor 2 corresponde a FAT16.

El bit 0 de la letra B indica si el archivo especificado fue encontrado en el sistema
de archivos. Un valor de 1 en esta posición confirma que el archivo fue localizado
correctamente.

Estos valores evidencian que la arquitectura fue capaz de inicializar correctamente
la tarjeta SD de pruebas, identificar su sistema de archivos como FAT16 y localizar el
archivo almacenado en el volumen, validando así el acceso al sistema de almacenamiento
externo. A continuación, se menciona brevemente como se verificarán las características
de la arquitectura de compresión.

CAPÍTULO 6. PRUEBAS 83

Figura 6.6: Acceso a SD correcto, elaboración propia.

6.4.4. Depuración de arquitectura mediante el Analizador Lógico
Integrado (ILA)

El Integrated Logic Analyzer (ILA) es un núcleo de depuración incluido en Vivado,
diseñado para observar en tiempo real las señales internas de un diseño implementado en
una FPGA sin la necesidad de instrumentación externa. Esta herramienta resulta muy útil
en este caso, donde la arquitectura se basa en estructuras paralelas sincronizadas entre sí.
Un desajuste por mínimo que sea, en la latencia o en la activación de señales entre los
elementos de procesamiento diseñados puede resultar en errores que serían difíciles de
detectar sin visibilidad interna del diseño.

La implementación del ILA incluye el núcleo debug_hub, que actúa como puente entre
la lógica interna de depuración y el entorno de desarrollo, utilizando como interfaz principal
el puerto JTAG. La configuración de las sondas, condiciones de captura, profundidad de
almacenamiento y otros parámetros puede realizarse tanto desde la interfaz gráfica de
Vivado como mediante comandos Tcl, lo que otorga flexibilidad en el flujo de validación
[95].

El ILA permite validar la correcta propagación de datos entre celdas, la sincronización
de los relojes locales y la respuesta del sistema en diferentes condiciones.

Una característica destacada del ILA es su capacidad de reconfiguración. A través de las
funcionalidades descritas en la documentación oficial [96], es posible modificar propiedades

CAPÍTULO 6. PRUEBAS 84

del núcleo sin necesidad de recompilar el diseño completo. Esto es particularmente útil
durante la fase de verificación funcional, ya que se pueden ajustar los parámetros del
núcleo en función de los resultados obtenidos en ejecuciones anteriores, lo cual se utilizó
para depurar las señales de los módulos que conforman la arquitectura, tanto de compresión
como de acceso a los archivos de pruebas. Configurado el entorno de pruebas físico, se
utilizaron los corpus descritos con anterioridad, se muestran los resultados de los mismos.

6.4.5. Comparativa con Calgary Corpus

La tabla 6.6 presenta los resultados obtenidos tras la implementación física de la ar-
quitectura de compresión sobre FPGA, comparando el rendimiento frente a dispositivos
Android de gama media y alta utilizando como referencia los archivos del Calgary Corpus.
A diferencia del entorno de simulación completo a 200MHz usado para validar módulos
internos a una velocidad ideal, la lectura desde la SD se mantuvo a una frecuencia real de
50MHz, reflejando una de las limitaciones operativas reales en transferencia de datos. Esta
configuración permitió obtener mediciones precisas de latencia y rendimiento de acceso al
sistema de archivos externo.

Durante la prueba, la lectura del primer carácter presentó una latencia de 20 ns (consi-
derando los procesos que tuvo que llevar a cabo la tarjeta de desarrollo para llegar a leer el
primer carácter desde el archivo de pruebas almacenado en un fichero de texto plano en la
SD en formato FAT) y la del segundo carácter una latencia de 20 ns adicionales promedio,
consistentes con accesos secuenciales a 50MHz. Dado que esta velocidad representa un
ciclo de reloj de 20 ns, se mantiene una tasa de transferencia de 50 millones de caracteres
por segundo bajo condiciones ideales, equivalente a 50 MB/s en lectura. En la práctica,
factores como latencia inicial de sincronización, tiempo de acceso a sectores y estructura
del sistema de archivos inducen un retardo adicional estimado entre 200 µs y 400 µs por
archivo, lo cual se refleja en los tiempos medidos para la arquitectura.

Respecto a la tasa de compresión, la arquitectura basada en FPGA supera los valores
reportados por los dispositivos Android y es congruente con la simulación realizada de
la misma, especialmente en archivos de tamaño medio a grande. El archivo book1 des-
taca con una tasa de compresión de 20.259 frente a 2.45 y 2.45 en gama media y alta
respectivamente, logrando una mejora superior a 8.2 veces. De forma similar, archivos
como book2, news, paper1 y trans muestran mejoras sustanciales, donde la arquitectu-
ra alcanza valores de entre 3.4 y 4.9, frente a los rangos típicos de 2.5–3.2 observados
en Android. En archivos de menor tamaño, la ventaja persiste, aunque de forma menos
marcada. Las únicas excepciones notables son los archivos progl y progp, donde las tasas
alcanzadas por Android de gama alta (4.37 y 4.34) superan ligeramente las obtenidas por
la arquitectura (4.02 y 3.685), probablemente debido a optimizaciones específicas en los
algoritmos software para estructuras de código fuente altamente repetitivas.

En cuanto al tiempo total de procesamiento, los resultados también reflejan un desem-
peño competitivo por parte de la arquitectura, considerando las penalizaciones por lectura
desde la SD y el retardo de escritura. En archivos como book1 y book2, se lograron tiem-
pos totales de procesamiento de 246.00ms y 195.47ms respectivamente, significativamente
menores a los tiempos reportados en dispositivos Android de gama media (por encima de
230ms y 150ms) y competitivos frente a los de gama alta. En los archivos más pequeños,

CAPÍTULO 6. PRUEBAS 85

como paper1 o progc, la arquitectura alcanzó tiempos inferiores a 18ms, validando la efi-
ciencia del procesamiento paralelo de las matrices sistólicas incluso bajo condiciones reales
con reloj de 50MHz contra un dispositivo con ocho procesadores, de los cuales 4 funcionan
a 3.39GHz.

En conjunto, estos resultados permiten concluir que la arquitectura propuesta no solo
ofrece una mejora clara en la tasa de compresión para una amplia gama de archivos, sino
que también mantiene tiempos de procesamiento competitivos sin necesidad de operar
a altas frecuencias. Esta ventaja deriva directamente de su diseño especializado, el cual
permite una explotación efectiva del paralelismo estructural, posicionándola como una
alternativa viable para aplicaciones embebidas de compresión con restricciones energéticas
y de rendimiento, como son los dispositivos móviles.

Tabla 6.6: Comparación Calgary Corpus en tarjeta física, elaboración propia.

Archivo Tipo Tamaño
[Bytes]

Tasa
com-
presión
Android

Tasa com-
presión
Arquitectu-
ra

Tiempo
gama me-
dia [ms]

Tiempo
gama alta
[ms]

Tiempo ar-
quitectura
[ms]

bib ASCII en forma-
to UNIX “refer” 111,261 3.16 4.30 43.5 12.5 35.6035

book1 ASCII sin for-
mato 768,771 2.45 20.259 235.7 56.2 246.0067

book2 ASCII en forma-
to UNIX "troff" 610,856 2.96 4.898 150 42.9 195.4739

news ASCII: archivo
por lotes 377,109 2.60 4.79 89.3 30.9 120.6750

paper1 Formato
"troff"de UNIX 53,161 2.84 3.752 34.5 13.3 17.0115

paper2 Formato
"troff"de UNIX 82,199 2.75 4.165 35.7 17.4 26.3037

progc Código fuente en
C 39,611 2.95 3.410 26.0 9.9 12.6755

progl Código fuente en
Lisp 71,646 4.37 4.02 31.5 13.6 22.9267

progp Código fuente en
Pascal 49,379 4.34 3.685 19.3 10.9 15.8013

trans Caracteres AS-
CII y de control 93,695 4.90 4.265 32.3 16.3 29.9824

6.4.6. Comparativa con Canterbury Corpus

La tabla 6.7 presenta los resultados obtenidos para el Canterbury Corpus, comparando
el desempeño entre la arquitectura propuesta y dispositivos Android de gama media y alta.
Este corpus contiene archivos variados, desde literatura hasta código fuente y documentos
técnicos.

En relación con la tasa de compresión, la arquitectura basada en FPGA demues-
tra una ventaja general sobre las plataformas Android. Archivos como alice29.txt y
asyoulik.txt alcanzan tasas de compresión de 4.62 y 4.39, superando las tasas logradas
por Android (2.79 y 2.55, respectivamente). Estos resultados reflejan la eficiencia de la
matriz sistólica para identificar patrones y estructuras repetitivas mediante un modelo de
ejecución paralelo.

Por el contrario, en archivos pequeños o menos redundantes como cp.html, fields.c,
grammar.lsp y xargs.1, Android alcanza mayores tasas de compresión. Esto se atribuye

CAPÍTULO 6. PRUEBAS 86

a la sobrecarga base de inicialización del sistema en hardware, así como a un aprovecha-
miento menos efectivo del paralelismo cuando el tamaño del archivo no permite aprovechar
completamente la búsqueda en diccionario ni las matrices sistólicas.

En cuanto al tiempo de compresión, la arquitectura mantiene una ventaja, incluso
considerando las condiciones reales que la rigen, de las cuales se debe tener en cuenta el
reloj de operación a 50MHz y considerar un retardo agregado por acceso secuencial desde
la SD, y la lectura de cada carácter. A pesar de estos retardos externos, los tiempos totales
siguen siendo considerablemente inferiores a los obtenidos en dispositivos Android. Por
ejemplo, plrabn12.txt es comprimido en apenas 20.8 ms, mientras que los dispositivos
de gama media y alta requieren 161.9 ms y 48.7 ms, respectivamente. Esta diferencia se
repite consistentemente en otros archivos, como lcet10.txt y asyoulik.txt, confirmando
la eficiencia de la arquitectura.

Incluso en archivos de menor tamaño, como grammar.lsp o xargs.1, donde los tiem-
pos de compresión caen por debajo de 0.25 ms, la eficiencia sigue siendo evidente. Estos
resultados validan la robustez del sistema ante diversas cargas de trabajo, manteniendo
un rendimiento coherente.

Las pruebas realizadas sobre el Canterbury Corpus reafirman que la arquitectura pro-
puesta no solo presenta mejores tasas de compresión en la mayoría de los escenarios, sino
que también alcanza tiempos de procesamiento menores. Esta ventaja se mantiene incluso
tras considerar restricciones de hardware como la frecuencia de operación y la latencia de
acceso a la memoria externa, lo que fortalece el argumento a favor del diseño especializado
y orientado a rendimiento para aplicaciones específicas en dispositivos móviles.

Tabla 6.7: Comparación Canterbury Corpus en tarjeta física, elaboración propia.

Archivo Tipo Tamaño
[Bytes]

Tasa com-
presión
Android

Tasa com-
presión
Arquitectu-
ra

Tiempo
gama me-
dia [ms]

Tiempo
gama alta
[ms]

Tiempo ar-
quitectura
[ms]

alice29.txt Texto en inglés 152,089 2.79 4.62 57.8 13.1 6.7384
asyoulik.txt Shakespeare 125,179 2.55 4.39 60.2 15.5 5.6213
cp.html HTML 24,603 3.02 2.86 23.2 11.6 1.1095
fields.c Código en C 11,150 3.40 1.91 21.7 11.5 0.7286
grammar.lspCódigo en LISP 3,721 2.68 1.12 20.8 8.9 0.3308

lcet10.txt Escritura técni-
ca 426,754 2.94 4.93 81.6 40.6 18.4948

plrabn12.txtPoesía 481,861 2.47 4.99 161.9 48.7 20.8083

xargs.1 Página de ma-
nual GNU 4,227 2.23 1.14 19.5 11.8 0.2096

6.4.7. Comparativa con Silesia Corpus

La tabla 6.8 presenta los resultados obtenidos al aplicar la arquitectura propuesta
sobre archivos del Silesia Corpus, en comparación con dos dispositivos Android (gama
media y gama alta). Este corpus es ampliamente reconocido por su diversidad en tamaño,
estructura y contenido, lo que permite una evaluación de la compresión tanto en términos
de eficiencia como de rendimiento temporal.

En cuanto a la tasa de compresión, la arquitectura logra una ventaja notable en la ma-
yoría de los archivos. Por ejemplo, en Dickens, Reymont y Webster, se alcanzan relaciones
de compresión de 5.150, 5.129 y 5.144 respectivamente, superando los valores registrados en

CAPÍTULO 6. PRUEBAS 87

Android, que oscilan entre 2.6 y 3.5. Estos resultados reflejan la capacidad del sistema pro-
puesto para explotar patrones de redundancia mediante procesamiento paralelo, así como
su eficiencia al manejar archivos de texto con estructura semántica definida. En contras-
te, archivos como Nci y Xml, que presentan patrones altamente repetitivos y estructuras
optimizadas para compresores adaptativos del sistema operativo, muestran tasas de com-
presión mayores en Android (10.486 y 7.722 respectivamente), aunque con penalizaciones
significativas en el tiempo de ejecución.

Respecto al tiempo de procesamiento, la arquitectura basada en FPGA presenta tiem-
pos inferiores, incluso considerando la penalización derivada del tiempo de inicialización
y acceso secuencial a la SD a 50 MHz. Por ejemplo, Webster (más de 40MB) fue com-
primido en 456.281ms, frente a 3657ms y 1266ms en dispositivos de gama media y alta,
respectivamente. De forma similar, Dickens fue procesado en 111.289ms, mientras que los
sistemas Android necesitaron 1474ms y 502.3ms. Esta tendencia se mantiene en archivos
como Reymont (71.347ms frente a más de 329ms en Android) y Xml (59.731ms frente a
314.7ms y 122.3ms).

Cabe destacar que los valores medidos para la arquitectura ya incorporan el tiempo
de latencia asociado a la inicialización de la SD y el retardo promedio por lectura de
caracteres, lo que refuerza la validez y aplicabilidad de los resultados en entornos reales.
En cambio, los sistemas Android se ven afectados por múltiples fuentes de latencia.

En conjunto, la arquitectura especializada ofrece ventajas claras en escenarios donde
se requiere compresión eficiente y rápida. El diseño paralelo y determinista permite man-
tener un flujo continuo de datos con bajo consumo y tiempos de procesamiento estables,
demostrando su potencial para aplicaciones embebidas, dispositivos móviles optimizados
y sistemas que operan en tiempo real bajo restricciones de energía y latencia.

Tabla 6.8: Comparación Silesia Corpus en tarjeta física, elaboración propia.

Archivo Tipo
Tamaño
[KBy-
tes]

Tasa com-
presión
Android

Tasa com-
presión
Arquitectu-
ra

Tiempo
gama me-
dia [ms]

Tiempo
gama alta
[ms]

Tiempo ar-
quitectura
[ms]

Dickens Texto en in-
glés 10193 2.634 5.150 1474 502.3 111.289

Nci Base de datos 33554 10.486 5.585 1097 358.7 378.206

Reymont Documento de
texto 6628 3.565 5.129 898.1 329.7 71.347

Webster HTML 41459 3.397 5.144 3657 1266 456.281
Xml HTML 5346 7.722 5.048 314.7 122.3 59.731

CAPÍTULO 6. PRUEBAS 88

A continuación, se describe el tercer apartado a considerar en las pruebas de la arqui-
tectura propuesta, el consumo energético.

6.5. Consumo energético
Con base en el reporte de consumo generado por Vivado 2023.2 (Build 4029153), se

presenta el análisis técnico de potencia estimada para la arquitectura de compresión im-
plementada sobre la FPGA Artix-7 XC7A200T, con grado industrial y caracterización en
proceso típico. A continuación, se describen los aspectos más relevantes del informe.

6.5.1. Análisis del consumo de potencia

El consumo total estimado del diseño alcanza 638mW, desglosado en 495mW co-
rrespondientes a potencia dinámica (relacionada con la conmutación de señales y uso de
recursos internos) y 143mW a potencia estática (corrientes de fuga). La temperatura
de unión estimada es 28.5 °C con una resistencia térmica efectiva ΘJA = 5.6 ◦CW−1 en
un entorno de Ta = 25 ◦C, sin disipación activa ni disipador térmico, lo cual garantiza
estabilidad térmica bajo operación normal.

6.5.2. Distribución de potencia por componente en chip

El mayor consumo corresponde a señales internas con 218mW, seguido por la lógica de
bloques configurables (LUTs y registros) con 144mW. Dentro de esta categoría destacan:

33957 LUTs como lógica: 131mW.

14799 multiplexores F7/F8: 12mW.

9676 registros: consumo inferior a <1mW.

165 bloques CARRY4: sin carga significativa.

Subsistema de reloj (6 señales): 25mW.

El bloque PLL consume 99mW, mientras que los bloques RAM y DSPs presentan
consumos marginales: 1 BRAM (2mW) y 11 DSPs activados (<1mW). Esto confirma
que la arquitectura se basa fundamentalmente en lógica combinacional paralela.

6.5.3. Distribución por dominio de alimentación

La fuente Vccint abastece la lógica interna y representa el mayor aporte energético.
Vccaux cubre componentes auxiliares como PLL y buffers. Los niveles Vcco son poco
utilizados al no haber interfaces de alto consumo, en la tabla 6.9 se muestran los resultados.

CAPÍTULO 6. PRUEBAS 89

Tabla 6.9: Distribución de corriente por dominio de alimentación, elaboración propia.

Fuente Voltaje (V) Corriente Total
(A)

Corriente
Dinámica (A)

Corriente
Estática (A)

Vccint 1.000 0.432 0.398 0.034
Vccaux 1.800 0.081 0.050 0.031
Vcco33 3.300 0.007 0.002 0.005
Vccbram 1.000 0.001 0.000 0.001
Vccadc 1.800 0.020 0.000 0.020

6.5.4. Distribución jerárquica del consumo en el diseño

El análisis por jerarquía (mostrado en la figura 6.7) revela que el módulo LZ77_Encoder_u
genera 382mW, más del 77 % de la potencia dinámica. En su interior, search_u0 y
search_u1 consumen 168mW y 161mW respectivamente, validando la carga compu-
tacional intensa de la etapa de búsqueda en arquitectura sistólica.

El módulo u_clk_wiz_0 aporta 100mW en generación y acondicionamiento de re-
loj. Subsistemas como input_fifo, u_sd_file_reader y u_sd_reader tienen impacto
marginal

Figura 6.7: Consumo energético de arquitectura propuesta, elaboración propia.

6.5.5. Análisis térmico de la arquitectura

El modelo térmico se fundamenta en:

Tj = Ta + (Ptotal ×ΘJA)

Donde:

Tj es la temperatura de unión,

Ta = 25 ◦C es la temperatura ambiente,

ΘJA = 5.6 ◦CW−1 es la resistencia térmica,

Ptotal = 638mW es la potencia total.

CAPÍTULO 6. PRUEBAS 90

Sustituyendo:

Tj = 25 + (0.638× 5.6) = 25 + 3.5728 = 28.57 ◦C

Este resultado concuerda con el valor reportado por Vivado: 28.5 °C. La arquitectura
mantiene márgenes térmicos seguros incluso en condiciones industriales, permitiendo una
operación confiable sin sistemas activos de refrigeración.

6.5.6. Medición física

Considerando la medición física del consumo energético durante la ejecución de la
arquitectura implementada en la FPGA, se llevaron a cabo pruebas con una fuente de
alimentación de laboratorio INSTEK PC-3030D, con temperatura ambiente de 22.2 °C y
sin condiciones de disipación activa. La alimentación se estableció a un voltaje constante
de 12.1V con una corriente registrada de 100mA, resultando en una potencia total de:

P = V × I = 12.1V × 0.1A = 1.21W

Sin embargo, al realizar un análisis más específico del consumo atribuible directamente
a la arquitectura implementada en la FPGA (excluyendo periféricos y pérdidas inherentes
a la fuente), se consideraron dos valores base de potencia extraídos de mediciones previas
y condiciones de inactividad, los cuales fueron 1.089W y 1.33W respectivamente. La dife-
rencia entre estos dos estados permite estimar el consumo neto relacionado con la ejecución
activa del sistema:

Pactiva = 1.33W − 1.089W = 241mW

Este valor representa un consumo específico atribuible a la operación del sistema bajo
carga, excluyendo componentes estáticos o no relacionados directamente con la lógica
sintetizada para la compresión.

En comparación, los reportes generados en Vivado (Power Report en modo ‘Post-
Implementation‘) mostraron un consumo estimado de entre 230mW y 270mW para confi-
guraciones equivalentes del diseño funcionando a 50MHz. La correlación entre la medición
física y la estimación por simulación es consistente, con un margen de error aceptable
dentro del rango esperado para este tipo de evaluaciones, dada la ausencia de disipación
térmica y las pérdidas en componentes pasivos de la placa (ver figura 6.10).

Este resultado valida la eficiencia energética de la arquitectura, confirmando que su
ejecución mantiene un consumo bajo, lo cual la convierte en una opción viable para su
implementación en entornos energéticamente restringidos como los dispositivos móviles.

6.5.7. Análisis comparativo del consumo energético

La Tabla 6.11 presenta una comparación entre el rendimiento energético de la arqui-
tectura de compresión implementada en FPGA y el dispositivo Android de gama alta, el
Samsung S24 Ultra. Se distinguen tres columnas que reflejan: los resultados simulados en

CAPÍTULO 6. PRUEBAS 91

Tabla 6.10: Comparación del consumo energético entre simulación y medición física.
Condición Consumo esti-

mado (W)
Consumo medi-
do (W) Observaciones

Estado inactivo de la
FPGA (baseline) – 1.089 Corriente base sin activi-

dad en lógica sintetizada

Ejecutando arquitec-
tura (total) – 1.33

Lectura continua desde
microSD y compresión
activa

Consumo neto arqui-
tectura 0.230–0.270 0.241 Diferencia entre estado

activo e inactivo

Condiciones ambien-
tales 25 °C 22.2 °C

Fuente: INSTEK PC-
2020D, sin disipación ac-
tiva

Vivado, las mediciones físicas realizadas con una fuente INSTEK PC-2020D, y los valo-
res obtenidos para el S24 Ultra con base en especificaciones técnicas y herramientas de
diagnóstico.

En lo que respecta al consumo energético, la arquitectura en FPGA muestra una mayor
eficiencia con un requerimiento promedio entre 230 y 270mW en simulación, y una medición
física de 241mW, considerando alimentación de 12.1 V a 100 mA, más una disipación
estimada de hasta 89mW. En contraste, el S24 Ultra demanda 3.2 W de forma sostenida
durante la compresión y puede alcanzar picos de hasta 24 W, pero se debe tener en cuenta
que el dispositivo móvil también debe suministrar energía en sus periféricos y procesos que
funcionan a la vez que la compresión, incluyendo pantalla, red, y módulos de seguridad,
entre otros.

Tabla 6.11: Comparación de rendimiento: Arquitectura propuesta vs. Samsung S24 Ultra,
elaboración propia.

Parámetro FPGA (simu-
lado)

FPGA (medi-
do)

Samsung S24 Ul-
tra

Consumo neto en compresión 0.230 – 0.270 W 0.241 W 3.2 W
Tiempo de compresión (10
MB) 100 – 120 ms 100 ms 860 ms

Velocidad promedio de com-
presión 9.5 ms/MB 10 ms/MB 8.6 ms/MB

Lectura desde almacenamien-
to

∼0.4 ms/kB
(microSD) ∼0.22 ms/kB <0.5 ms/MB (UFS

4.0)
Consumo pico durante ejecu-
ción N/A 1.33 W (total

sistema) 24 W

Retardos adicionales (sistema
operativo, scheduling) – – 0.5 – 2.0 ms

(sincr./hilos)

Condiciones de medición
Estimación por
actividad de
switchs

Fuente INS-
TEK PC-2020D,
22.2◦C

Basado en datos de
diagnóstico energé-
tico y especificacio-
nes

6.5.8. Análisis del tiempo empleado

En cuanto al tiempo de compresión, la arquitectura en FPGA logra procesar 10 MB en
aproximadamente 100 ms, lo que equivale a una velocidad efectiva de 100 MB/s o 800 Mbps
(considerando 1 byte = 8 bits). En comparación, el Samsung S24 Ultra requiere cerca de
860 ms para la misma cantidad de datos, lo que se traduce en una tasa de 11.63 MB/s o

CAPÍTULO 6. PRUEBAS 92

aproximadamente 93.04 Mbps. Esta diferencia representa una mejora de más de 8.6 veces
a favor de la implementación en hardware, atribuible a la especialización de la arquitectura
basada en matrices sistólicas y al control del flujo de datos sin la interferencia de latencias
propias del sistema operativo, sincronización de hilos o gestión multitarea.

Asimismo, el retardo por lectura desde almacenamiento también presenta diferencias
sustanciales. En el caso de la FPGA, se utilizó una microSD operando bajo el protocolo SPI
a 50 MHz, con una latencia estimada de ∼0.32 ms por kB, correspondiente a una velocidad
máxima teórica de 250 kB/ms o 2 Mbps. En cambio, el S24 Ultra accede al almacenamiento
mediante tecnología UFS 4.0, con tiempos de acceso inferiores a 0.5 ms por MB, es decir,
velocidades superiores a 2000 MB/s en condiciones ideales. Sin embargo, esta ventaja queda
parcialmente neutralizada por la carga computacional del sistema Android, los mecanismos
de seguridad del kernel y la asignación de recursos con otros procesos activos, lo que en la
práctica afecta negativamente el rendimiento de la compresión.

CAPÍTULO 6. PRUEBAS 93

6.5.9. Discusión de resultados

Los resultados obtenidos evidencian que una arquitectura especializada en compresión,
ejecutada sobre FPGA, es energéticamente más eficiente y rápida en términos de procesa-
miento de datos que soluciones basadas en procesadores móviles, todo ello se recaba en la
tabla 6.11.

Mientras que un dispositivo móvil como el Samsung S24 Ultra incorpora tecnologías de
almacenamiento avanzado y capacidades computacionales superiores en general, su configu-
ración introduce demoras cuando se enfrenta a tareas repetitivas, como lo es la compresión.
Esto reafirma la viabilidad de las soluciones hardware dedicadas para aplicaciones donde
el rendimiento y la eficiencia energética son requisitos críticos.

Capítulo 7

Conclusión

A partir del desarrollo, implementación y evaluación de la arquitectura especializada
para compresión de texto sin pérdida basada en el algoritmo LZ77, se puede afirmar que
los objetivos definidos al inicio del proyecto han sido alcanzados. El análisis de algoritmos
de compresión permitió seleccionar LZ77 como base de la propuesta, dada su naturaleza
deslizante, estructurada y aplicable a flujos de datos secuenciales, lo que facilitó su adapta-
ción a un entorno paralelizable como el de las matrices sistólicas. La arquitectura diseñada
integró adecuadamente bloques de control, almacenamiento y procesamiento, organizados
de forma escalable mediante elementos de procesamiento configurables, capaces de com-
parar cadenas de texto en paralelo, cumpliendo así con el diseño de una matriz sistólica
funcional y parametrizable.

Durante la validación, se comprobó la tasa de compresión, el tiempo de procesamiento,
y el consumo energético, tanto en simulación como en pruebas físicas. La arquitectura
alcanzó una tasa de procesamiento de hasta 100 MB/s, procesando 10 MB en menos de
100 ms, superando en eficiencia y velocidad al dispositivo móvil de gama alta contra el que
se realizó la comparación. Además, se logró cumplir con la generación de referencias tipo
distancia-longitud, basado en el estándar LZ77, demostrando la efectividad del módulo
de coincidencia y codificación implementado en hardware. La funcionalidad de simulación
produjo reportes detallados sobre el uso de LUTs, FFs, BRAMs y DSPs, así como de
consumo dinámico y estático, permitiendo validar el cumplimiento de los requerimientos
de eficiencia.

También se verifico que el sistema operó con flujos de entrada a alta velocidad, procesó
los datos en bloques, implementó buffers internos, integró la matriz sistólica, y generó
referencias de compresión de forma correcta. El sistema fue capaz de trabajar sobre datos
codificados en ASCII, validarse y obtener métricas de compresión y latencia.

Finalmente, el diseño demostró eficiencia energética, registrando un consumo máximo
de 1.21 W en pruebas físicas, valor muy por debajo del umbral establecido de 5 W. La
implementación optimizó el uso de recursos del FPGA Artix-7 XC7A200T, permitiendo
mantener un margen térmico seguro y estabilidad operativa sin necesidad de sistemas
de enfriamiento activo. La arquitectura resultó escalable, ya que el número de elementos
de procesamiento y la longitud de la ventana se pueden modificar sin comprometer la
frecuencia de operación. Todo ello verificado con una interfaz estándar, bajo la que fue
compatible con tarjetas SD, ya que se diseñó libre de cualquier limitante impuesta por

94

CAPÍTULO 7. CONCLUSIÓN 95

algún fabricante y es relativamente sencillo conectar el flujo de datos a cualquier estándar
conocido, ya que tiene bloques con entrada y salida bien definidos; considerar también que
se puede implementar en diferentes frecuencias de funcionamiento, logrando compatibilidad
para futuras expansiones.

Asimismo, aunque el sistema genera referencias comprimidas basado en LZ77, no se
implementó una etapa de empaquetamiento final en bitstream, considerando que el foco
principal fue la compresión funcional y no la transmisión inmediata del resultado, ya que
esto limitaría la arquitectura respecto a compatibilidad con diversos estándares o imple-
mentaciones que se pueden construir basándose en ella.
Es importante señalar que una de las principales limitaciones al momento de validar cuan-
titativamente el desempeño de la arquitectura propuesta frente a dispositivos móviles de
uso general —como teléfonos inteligentes con sistema operativo Android— radica en las
restricciones impuestas por dicho entorno para acceder a métricas de bajo nivel. En dis-
positivos que no cuentan con acceso root, el sistema operativo restringe la monitorización
directa de subprocesos clave como el consumo específico del procesador, el uso de peri-
féricos o el comportamiento térmico detallado, lo que imposibilita la obtención de datos
precisos a la hora de ejecutar el algoritmo de compresión.

Como consecuencia, las mediciones realizadas en estos dispositivos representan un con-
sumo global que incluye no solo la ejecución del algoritmo de compresión, sino también
la operación simultánea de múltiples módulos como la pantalla, la gestión de red (Wi-Fi,
datos móviles), procesos en segundo plano y servicios del sistema, los cuales no pueden ser
aislados sin modificaciones profundas al entorno operativo. Esta condición introduce un
sesgo en la comparación, ya que los resultados obtenidos en la FPGA —que corresponden
exclusivamente al bloque funcional diseñado— no pueden contrastarse con métricas puras
equivalentes del entorno Android.

Por tanto, aunque los resultados indican una ventaja significativa de la arquitectura
en términos de velocidad, eficiencia energética y especialización, se reconoce que las li-
mitaciones de instrumentación en plataformas comerciales sin acceso completo al sistema
impiden una comparación absolutamente equitativa. Esta restricción representa un área
de oportunidad para trabajos futuros, que podrían considerar el uso de entornos contro-
lados, emuladores o dispositivos con acceso de administrador completo para lograr una
evaluación más precisa y exhaustiva.

En resumen, se ha demostrado que una arquitectura basada en matrices sistólicas puede
comprimir texto sin pérdida de forma eficiente, rápida y con bajo consumo energético,
cumpliendo tanto con los objetivos del proyecto como con los requerimientos técnicos
planteados, y quedando abierta a mejoras e integraciones a futuro.

7.1. Respuesta a la pregunta de investigación
A lo largo del desarrollo de esta investigación se abordó la pregunta: ¿Cómo se puede

mejorar la utilización de hardware dedicado para comprimir archivos de texto sin pérdida?.
La solución propuesta se centró en el diseño de una arquitectura especializada basada en
el algoritmo LZ77, implementada mediante una matriz sistólica que permite explotar el
paralelismo en la tarea de comparación de cadenas. Esta aproximación representó una

CAPÍTULO 7. CONCLUSIÓN 96

mejora sustancial frente a soluciones tradicionales en software y hardware, que suelen
procesar los datos de manera secuencial o con bajo grado de paralelismo.

Se mejoró la utilización del hardware al segmentar las etapas del algoritmo de com-
presión en bloques dedicados, conectados a través de una estructura que permitió flujo
continuo de datos, minimizando tiempos muertos y optimizando la utilización de recursos.
En particular, cada elemento de procesamiento de la matriz sistólica fue diseñado para
ejecutar operaciones de coincidencia en paralelo sobre diferentes posiciones de la ventana
deslizante, lo que redujo el tiempo total de compresión. Esta configuración permitió que
el sistema alcanzara tasas de compresión cercanas al límite teórico impuesto por el ancho
del bus y la frecuencia de operación, maximizando el aprovechamiento del FPGA.

Finalmente, la validación confirmó que el diseño propuesto reduce el consumo energético
respecto a implementaciones en dispositivos de uso general, manteniendo una eficiencia
constante en el tiempo de compresión. En conjunto, estos elementos demostraron que es
posible mejorar sustancialmente la utilización del hardware dedicado para compresión sin
pérdida, mediante un diseño especializado, escalable y eficiente.

7.2. Trabajo a Futuro
A partir de los resultados obtenidos durante el desarrollo de esta investigación, se

consideran múltiples líneas de trabajo orientadas a que la arquitectura de compresión se
consolide como un procesador dedicado plenamente funcional. Uno de los primeros aspectos
a abordar consiste en una optimización del diseño, particularmente en los subsistemas de
acceso a memoria, considerando la localización espacial de los bloques de memoria, para
buscar reducir los retardos de acceso y minimizar el uso de recursos lógicos mediante
estructuras de RAM distribuida y bloques BRAM con controladores más eficientes. Este
ajuste impactaría en la eficiencia energética y la latencia del sistema.

Posteriormente, se contempla la transición del diseño desde una plataforma de desarro-
llo FPGA hacia una implementación en hardware dedicado, considerando todas las fases
necesarias para la creación de un procesador de aplicación específica. Esta migración im-
plica inicialmente la consolidación del diseño RTL (Register Transfer Level), asegurando
su modularidad, escalabilidad y cumplimiento de estándares de verificación como UVM
(Universal Verification Methodology). Superada esta etapa, el flujo de síntesis hacia ASIC
requiere procesos adicionales, como la conversión del diseño a un flujo compatible con he-
rramientas de síntesis lógica para silicio, la inserción de elementos de testeo estructurado
(scan chains, BIST), y la planificación física preliminar del layout del chip. Asimismo, será
necesario desarrollar una capa de abstracción software (API y drivers) que permita utilizar
el núcleo de compresión desde sistemas operativos convencionales, como Linux o Android,
facilitando su adopción en arquitecturas heterogéneas.

Finalmente, y una vez completadas las etapas anteriores, se podrá avanzar a la etapa
de tape-out para la fabricación del ASIC. Esta fase incluye validación en silicio (first
silicon), pruebas funcionales post-fabricación, validación del encapsulado, y diseño del
PCB para entornos de evaluación y pruebas de campo. A partir de ahí, el diseño puede
ser comercializado como IP embebible o integrado como componente dedicado en sistemas
personalizados, ya sea en almacenamiento masivo, dispositivos móviles, plataformas IoT o

CAPÍTULO 7. CONCLUSIÓN 97

centros de datos. La arquitectura propuesta, ofrece así un camino hacia una solución de
alto rendimiento y bajo consumo, completamente escalable y adaptable a las necesidades
futuras de procesamiento de datos.

Apéndice A

Anexo

A.1. La Desigualdad de Kraft-McMillan
Esta desigualdad es fundamental para asegurar que se está trabajando con un código

prefijo, destacándose la codificación de Huffman como un ejemplo ampliamente utilizado
de esta clase de códigos.

La desigualdad de Kraft-McMillan es crucial para validar la no ambigüedad de có-
digos de longitud variable. Específicamente, establece que, para un código no ambiguo
de longitud variable compuesto por n códigos con longitudes Li, se cumple la siguiente
condición:

n∑
i=1

2−Li ≤ 1 (15)

Propiedad de la desigualdad La segunda parte de la afirmación establece lo siguiente:
dado un conjunto de n enteros positivos (L1, L2, . . . , Ln) que satisfacen la inecuación ante-
rior, existe un código sin ambigüedad de longitud variable tal que Li refiere a la longitud
de cada código individual que lo conforme. En conjunto, ambas partes indican que un
código es no ambiguo si y solo si satisface esta relación.

Relación con la entropía La desigualdad de Kraft-McMillan puede relacionarse con el
concepto de entropía al notar que las longitudes Li pueden expresarse como:

Li = − log2 Pi + Ei,

donde Ei representa la diferencia en la que Li excede la entropía, es decir, la longitud
adicional del código i. Sustituyendo en la desigualdad, se obtiene:

2−Li = 2−(log2 Pi+Ei) =
2− log2 Pi

2Ei
=

Pi

2Ei
(16)

Cuando todas las longitudes adicionales Ei son iguales (Ei = E), la desigualdad de
Kraft-McMillan puede expresarse como:

1 ≥
n∑

i=1

Pi

2E
=

∑n
i=1 Pi

2E
=

1

2E
(17)

98

APÉNDICE A. ANEXO 99

De lo anterior, se deduce la relación:

2E ≥ 1 =⇒ E ≥ 0 (18)

Siendo que, un código sin ambigüedad tiene una longitud adicional Ei no negativa.
En otras palabras, la longitud del código debe ser mayor o, al menos, igual a la longitud
determinada por su entropía.

A.2. Código fuente
Se presenta de forma breve las partes relevantes del código escrito en Verilog respecto

al diseño de la arquitectura de compresión.

Código parcial para las instancias de módulos de búsqueda.

1 search search_u0(
2 .clk (sys_clk), //Reloj
3 .rst_n (rst_n), //Reset activo en bajo
4 .look_ahead_buffer_w (look_ahead_buffer_w), //Bus del buffer de

↪→ anticipacion
5 .search_buffer_w (search_buffer_w[8*512 -1:0]), //Mitad inferior

↪→ del bus del buffer de busqueda
6 .match_len (match_len1), // Longitud de coincidencia 1
7 .SB_index (SB_index1) // Indice de buffer de busqueda 1
8);
9

10 search search_u1(
11 .clk (sys_clk), //Reloj
12 .rst_n (rst_n), //Reset activo en bajo
13 .look_ahead_buffer_w (look_ahead_buffer_w), //Bus del buffer de

↪→ anticipacion
14 .search_buffer_w (search_buffer_w[8*1024 -1:8*512]), // Mitad

↪→ superior del bus del buffer de busqueda
15 .match_len (match_len2), // Longitud de coincidencia 2
16 .SB_index (SB_index2) // Indice de buffer de busqueda 2
17);

Código parcial para el estado de búsqueda: encontrar la coincidencia más larga.

1 if(count_search) begin
2 // Seleccionar la longitud de coincidencia mas larga entre dos

↪→ buffers de busqueda de 512 bytes
3 {match_len , SB_index} <= (match_len1 >= match_len2) ? {

↪→ match_len1 , SB_index1} : {match_len2 , (SB_index2 + 12’
↪→ d512)};

4 ready_encode <= 1; // Preparacion a 1
5 finish_out <= 0; // Finalizacion de salida a 0

APÉNDICE A. ANEXO 100

6 finish_shift <= 0; // Finalizacion de desplazamiento a 0
7 end

Código parcial para generar los datos de salida codificados.

1 // Generar datos de salida para coincidencia de longitud 0
2 if(count_out == 0) begin
3 o_data <= {3’b0, match_len }; // Primer byte de salida:

↪→ longitud de coincidencia
4 count_out <= 1; // Incrementar contador de salida
5 end
6 else begin
7 o_data <= look_ahead_buffer[15]; // Segundo byte de salida:

↪→ datos
8 count_out <= 0; // Reiniciar contador de salida
9 finish_out <= 1; // Finalizar salida

10 encoded_length <= encoded_length + 1; // Incrementar
↪→ longitud codificada

11 end
12 end
13 else begin
14 // Generar datos de salida para coincidencia de longitud no

↪→ cero
15 if(count_out == 0) begin
16 o_data <= {SB_index[2:0], match_len }; // Primer byte de

↪→ salida: ndice y longitud
17 count_out <= 1; // Incrementar contador de salida
18 end
19 else begin
20 o_data <= SB_index[10:3]; // Segundo byte de salida: ndice
21 count_out <= 0; // Reiniciar contador de salida
22 finish_out <= 1; // Finalizar salida
23 encoded_length <= encoded_length + match_len; // Incrementar

↪→ longitud codificada
24 end
25 end

Código parcial para las instancias de módulos de búsqueda.

1 generate
2 // Instancia el m d u l o find_equal para cada segmento del

↪→ buffer de b s q u e d a
3 for(i = 0; i < 16; i = i + 1) begin
4 find_equal find_equal_i(
5 .look_ahead_buffer(look_ahead_buffer[15]), // Buffer de

↪→ adelantamiento actual
6 .search_buffer_w(search_buffer_w[256 * (i + 1) - 1 :

↪→ 256 * i]), // Segmento del buffer de b s q u e d a

APÉNDICE A. ANEXO 101

7 .equal(equal[i]), // Salida de igualdad
8 .match_fail(match_fail[i]) // Salida de fallo de

↪→ coincidencia
9);

10 end
11 endgenerate

Código parcial para el módulo de comparación entre caracteres de entrada y de porción
del diccionario dinámico.

1 module find_equal (
2 input [7:0] look_ahead_buffer , // Entrada de 8 bits

↪→ llamada look_ahead_buffer
3 input [8*32-1:0] search_buffer_w , // Entrada de 256 bits (8

↪→ bits * 32) llamada search_buffer_w
4 output [4:0] equal , // Salida de 5 bits llamada equal
5 output match_fail // Salida de 1 bit llamada

↪→ match_fail
6);
7 wire [7:0] search_buffer [31: 0]; // Declara un array de 32

↪→ elementos de 8 bits cada uno llamado search_buffer
8 genvar j; // Declara una variable generadora llamada j
9 generate // Inicia un bloque generate para g e n e r a c i n de

↪→ hardware
10 for(j=0 ; j<32 ; j=j+1) begin // Bucle for que va de 0 a 31
11 assign search_buffer[j] = search_buffer_w[8*(j+1) -1 :

↪→ 8*j]; // Asigna porciones de 8 bits de
↪→ search_buffer_w a search_buffer

12 end
13 endgenerate

Código referente a la longitud de la coincidencia y el desplazamiento para el decodificador.

1 case (cur_state)
2 IDLE : begin
3 match_len <= i_data_decode[4:0]; // Longitud de

↪→ coincidencia de los datos de entrada
4 offset[2:0] <= i_data_decode[7:5]; // Parte baja del

↪→ desplazamiento de los datos de entrada
5 end
6

7 DECODE1 : begin
8 buffer[wptr] <= i_data_decode; //Datos de entrada en el

↪→ buffer en la p o s i c i n del puntero de escritura
9 wptr <= wptr + 12’d1; // Incrementa el puntero de

↪→ escritura
10 decoded_length <= decoded_length + 1; // Incrementa la

↪→ longitud decodificada

APÉNDICE A. ANEXO 102

11 end
12

13 DECODE2_1 : begin
14 offset[10:3] <= i_data_decode; //Parte alta del

↪→ desplazamiento de los datos de entrada
15 end
16

17 DECODE2_2 : begin
18 buffer[wptr] <= buffer[wptr -offset]; //Valor encontrado en

↪→ la posicion calculada por el desplazamiento
19 wptr <= wptr + 12’d1; // Incrementa el puntero de

↪→ escritura
20 match_len <= match_len - 1; // Decrementa la longitud de

↪→ coincidencia
21 decoded_length <= decoded_length + 1; // Incrementa la

↪→ longitud decodificada
22 end
23

24 FINISH : begin
25 wptr <= 0; // Reinicia el puntero de escritura al finalizar
26 end
27 endcase

A.3. Esquemáticos de diseño de arquitectura
Se presenta los diagramas obtenidos al compilar el diseño desarrollado en el entorno de

vivado, se demuestra la correcta integración de la arquitectura propuesta y la arquitectura
para el manejo de la tarjeta SD, así como la misma a detalle, en la figura A.2.

APÉNDICE A. ANEXO 103

Figura A.1: Esquemático de diseño de arquitectura propuesta con entrada desde tarjeta
SD, elaboración propia.

APÉNDICE A. ANEXO 104

Figura A.2: Esquemático de diseño de arquitectura propuesta, elaboración propia.

Bibliografía

[1] H. T. Kung and C. E. Leiserson, “Systolic arrays for vlsi,” Proceedings of the 1978
Conference on Advanced Research in VLSI, pp. 105–116, 1978.

[2] AlinX, “Artix-7 FPGA Development Board AX7A200.” https://www.alinx.com/
public/upload/file/AX7A200_User_Manual.pdfa, 2019. [Accessed 08-11-2023].

[3] “SD and Micro SD card pins with description and functions — elec-
troniccircuitsdesign.com.” https://www.electroniccircuitsdesign.com/pinout/
sd-microsd-card-pinout.html. [Accessed 29-05-2025].

[4] “Simplified Specifications - SD Association — sdcard.org.” https://www.sdcard.org/
downloads/pls/. [Accessed 28-05-2025].

[5] M. Satyanarayanan, N. Beckmann, G. A. Lewis, and B. Lucia, “The role of edge
offload for hardware-accelerated mobile devices,” HotMobile ’21, (New York, NY,
USA), p. 22–29, Association for Computing Machinery, 2021.

[6] Z. S. Jyrki Alakuijala, Evgenii Kliuchnikov and I. Lode Vandevenne, Google,
“Comparison of Brotli, Deflate, Zopfli, LZMA, LZHAM and Bzip2 Compres-
sion Algorithms.” http://ftp2.de.freebsd.org/pub/misc/cran/web/packages/brotli/
vignettes/brotli-2015-09-22.pdf, 2015. [Accessed 30-05-2024].

[7] Qualcomm Technologies, Inc., “Trepn profiler - performance and power profiling tool
for android.” https://developer.qualcomm.com/software/trepn-profiler, 2022. Versión
utilizada: 7.0.8940, compatible con Android 14.

[8] SD Association, “SD Specifications Part 1 Physical Layer Simplified Specification
Version 6.00.” https://www.sdcard.org/downloads/pls/, 2017. [Accessed 05-05-2025].

[9] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Pro-
ceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[10] J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM Journal of Research and
Development, vol. 23, no. 2, pp. 149–162, 1979.

[11] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

105

https://www.alinx.com/public/upload/file/AX7A200_User_Manual.pdfa
https://www.alinx.com/public/upload/file/AX7A200_User_Manual.pdfa
https://www.electroniccircuitsdesign.com/pinout/sd-microsd-card-pinout.html
https://www.electroniccircuitsdesign.com/pinout/sd-microsd-card-pinout.html
https://www.sdcard.org/downloads/pls/
https://www.sdcard.org/downloads/pls/
http://ftp2.de.freebsd.org/pub/misc/cran/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
http://ftp2.de.freebsd.org/pub/misc/cran/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
https://developer.qualcomm.com/software/trepn-profiler
https://www.sdcard.org/downloads/pls/

BIBLIOGRAFÍA 106

[12] S. S.A, A. Swedha, and D. Naveen, “Survey of content addressable memory,” IJCRT,
vol. 06, p. 1516, 02 2018.

[13] Kung, “Why systolic architectures?,” Computer, vol. 15, no. 1, pp. 37–46, 1982.

[14] W. Katz, Phillip W. (Glendale, “String searcher, and compressor using same,” Sep-
tember 1991.

[15] H. Hassani and S. MacFeely, “Driving excellence in official statistics: Unleashing the
potential of comprehensive digital data governance,” Big Data and Cognitive Compu-
ting, vol. 7, no. 3, 2023.

[16] CloudScene, “South America | Data Center Market Overview | Cloudscene — clouds-
cene.com.” https://cloudscene.com/region/datacenters-in-south-america, 2024. [Ac-
cessed 18-08-2024].

[17] E. Topics, “Amount of Data Created Daily (2024) — explodingtopics.com.” https:
//explodingtopics.com/blog/data-generated-per-day, 2024. [Accessed 20-08-2024].

[18] INEGI, “Encuesta nacional (endutih) 2023.” https://www.inegi.org.mx/contenidos/
saladeprensa/boletines/2024/ENDUTIH/ENDUTIH_23.pdf, 2024. [Accessed 19-09-
2024].

[19] “Encuesta Nacional sobre Disponibilidad y Uso de Tecnologías de
la Información en los Hogares (ENDUTIH) 2023. (Comunicado de
prensa) 13 de junio | Instituto Federal de Telecomunicaciones -
IFT.” https://www.ift.org.mx/comunicacion-y-medios/comunicados-ift/es/
encuesta-nacional-sobre-disponibilidad-y-uso-de-tecnologias-de-la-informacion-en-los-hogares-endutih-1,
2024. [Accessed 13-07-2024].

[20] Branch, “Estadísticas de la situación digital de México en el
2024 — branch.com.co.” https://branch.com.co/marketing-digital/
estadisticas-de-la-situacion-digital-de-mexico-en-el-2024, 2024. [Accessed 21-09-
2024].

[21] Oberlo, “Average Internet Speed by Country and Territory (2024) — oberlo.com.”
https://www.oberlo.com/statistics/average-internet-speed-by-country, 2024. [Acces-
sed 21-09-2024].

[22] L. P. Cox and L. Ao, “Levelup: A thin-cloud approach to game livestreaming,” in 2020
IEEE/ACM Symposium on Edge Computing (SEC), pp. 246–256, 2020.

[23] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and F. Kaw-
sar, “Deepx: A software accelerator for low-power deep learning inference on mobile
devices,” in 2016 15th ACM/IEEE International Conference on Information Proces-
sing in Sensor Networks (IPSN), pp. 1–12, 2016.

https://cloudscene.com/region/datacenters-in-south-america
https://explodingtopics.com/blog/data-generated-per-day
https://explodingtopics.com/blog/data-generated-per-day
https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2024/ENDUTIH/ENDUTIH_23.pdf
https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2024/ENDUTIH/ENDUTIH_23.pdf
https://www.ift.org.mx/comunicacion-y-medios/comunicados-ift/es/encuesta-nacional-sobre-disponibilidad-y-uso-de-tecnologias-de-la-informacion-en-los-hogares-endutih-1
https://www.ift.org.mx/comunicacion-y-medios/comunicados-ift/es/encuesta-nacional-sobre-disponibilidad-y-uso-de-tecnologias-de-la-informacion-en-los-hogares-endutih-1
https://branch.com.co/marketing-digital/estadisticas-de-la-situacion-digital-de-mexico-en-el-2024
https://branch.com.co/marketing-digital/estadisticas-de-la-situacion-digital-de-mexico-en-el-2024
https://www.oberlo.com/statistics/average-internet-speed-by-country

BIBLIOGRAFÍA 107

[24] R. Lee, S. I. Venieris, L. Dudziak, S. Bhattacharya, and N. D. Lane, “Mobisr: Efficient
on-device super-resolution through heterogeneous mobile processors,” in The 25th
Annual International Conference on Mobile Computing and Networking, MobiCom
’19, (New York, NY, USA), Association for Computing Machinery, 2019.

[25] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding,” 2016.

[26] D. Salomon and G. Motta, Handbook of Data Compression. Springer Publishing
Company, Incorporated, 5th ed., 2009.

[27] K. Vaid, “Improved cloud service performance through ASIC acceleration | Micro-
soft Azure Blog — azure.microsoft.com.” https://azure.microsoft.com/en-us/blog/
improved-cloud-service-performance-through-asic-acceleration/, 2019. [Accessed 22-
12-2024].

[28] F. Arias-Odón, Investigación teórica, investigación empírica e investigación generati-
va para la construcción de teoría: Precisiones conceptuales 1. ResearchGate, 09 2019.

[29] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software development
methods: Review and analysis,” Proc. Espoo 2002, pp. 3–107, 01 2002.

[30] M. Yadav, N. Goyal, and J. Yadav, “Agile methodology over iterative approach of
software development -a review,” in 2015 2nd International Conference on Computing
for Sustainable Global Development (INDIACom), pp. 542–547, 2015.

[31] S. Goyal, “Agile Techniques for Project Management and Software Engineering.” http:
//csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf, 2007. [Accessed 06-03-2024].

[32] A. F. Chowdhury and M. N. Huda, “Comparison between adaptive software develop-
ment and feature driven development,” in Proceedings of 2011 International Confe-
rence on Computer Science and Network Technology, vol. 1, pp. 363–367, 2011.

[33] “Search Form — pascal.computer.org.” https://pascal.computer.org/sev_display/
search.action;jsessionid=5Rz1tW1h9aRvjYnS5yIXYohC5HTs_kD-HAszrfV9.
cslcpav04. [Accessed 23-03-2025].

[34] Google, “GitHub - google/snappy: A fast compressor/decompressor — github.com.”
https://github.com/google/snappy, 2011. [Accessed 18-05-2024].

[35] Google, “GitHub - google/gipfeli — github.com.” https://github.com/google/gipfeli,
2014. [Accessed 23-05-2024].

[36] Google, “GitHub - google/zopfli: Zopfli Compression Algorithm is a compression li-
brary programmed in C to perform very good, but slow, deflate or zlib compression.
— github.com.” https://github.com/google/zopfli, 2012. [Accessed 28-05-2024].

[37] Google, “GitHub - google/brotli: Brotli compression format — github.com.” https:
//github.com/google/brotli, 2015. [Accessed 29-05-2024].

https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/
https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/
http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf
http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf
https://pascal.computer.org/sev_display/search.action;jsessionid=5Rz1tW1h9aRvjYnS5yIXYohC5HTs_kD-HAszrfV9.cslcpav04
https://pascal.computer.org/sev_display/search.action;jsessionid=5Rz1tW1h9aRvjYnS5yIXYohC5HTs_kD-HAszrfV9.cslcpav04
https://pascal.computer.org/sev_display/search.action;jsessionid=5Rz1tW1h9aRvjYnS5yIXYohC5HTs_kD-HAszrfV9.cslcpav04
https://github.com/google/snappy
https://github.com/google/gipfeli
https://github.com/google/zopfli
https://github.com/google/brotli
https://github.com/google/brotli

BIBLIOGRAFÍA 108

[38] M. Powell, “The Canterbury Corpus — corpus.canterbury.ac.nz.” https://corpus.
canterbury.ac.nz/, 2000. [Accessed 30-05-2024].

[39] S. Xie, X. He, S. He, and Z. Zhu, “Curc: a cuda-based reference-free read compressor,”
Bioinformatics, vol. 38, pp. 3294–3296, 05 2022.

[40] S. Choi, Y. Kim, D. Lee, S. Lee, K. Park, Y. H. Song, and Y. H. Song, “Design of fpga-
based lz77 compressor with runtime configurable compression ratio and throughput,”
IEEE Access, vol. 7, pp. 149583–149594, 2019.

[41] O. Plugariu, A. D. Gegiu, and L. Petrica, “Fpga systolic array gzip compressor,” in
2017 9th International Conference on Electronics, Computers and Artificial Intelli-
gence (ECAI), pp. 1–6, 2017.

[42] G. Forman and J. Zahorjan, “The challenges of mobile computing,” Computer, vol. 27,
no. 4, pp. 38–47, 1994.

[43] M. K. J. Mahendra Pratap Singh, “Evolution of processor architecture in mobile
phones,” International Journal of Computer Applications, vol. 90, pp. 34–39, March
2014.

[44] X. H. Xu, C. T. Clarke, and S. R. Jones, “High performance code compression archi-
tecture for the embedded arm/thumb processor,” in Proceedings of the 1st Conference
on Computing Frontiers, CF ’04, (New York, NY, USA), p. 451–456, Association for
Computing Machinery, 2004.

[45] P. Sun and J. Nunez-Yanez, “Optimizing memory power in hybrid arm-fpga chips
with lossless data compression,” in Proceedings of the FPGA World Conference 2014,
FPGAWorld ’14, (New York, NY, USA), Association for Computing Machinery, 2014.

[46] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein, S. McDaniel,
M. Piatek, C. Scott, M. Welsh, and B. Yin, “Flywheel: Google’s data compression
proxy for the mobile web,” in Proceedings of the 12th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’15, (USA), p. 367–380, USENIX
Association, 2015.

[47] A. Prakash, S. Wang, A. E. Irimiea, and T. Mitra, “Energy-efficient execution of
data-parallel applications on heterogeneous mobile platforms,” in 2015 33rd IEEE
International Conference on Computer Design (ICCD), pp. 208–215, 2015.

[48] J. Acharya and S. Gaur, “Edge compression of gps data for mobile iot,” in 2017 IEEE
Fog World Congress (FWC), pp. 1–6, 2017.

[49] D. Salomon, Data Compression: The Complete Reference. Springer, 2004.

[50] K. Sayood, Introduction to Data Compression. Morgan Kaufmann, 2017.

[51] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compressing and Inde-
xing Documents and Images. Morgan Kaufmann, 1999.

https://corpus.canterbury.ac.nz/
https://corpus.canterbury.ac.nz/

BIBLIOGRAFÍA 109

[52] G. K. Wallace, “The jpeg still picture compression standard,” IEEE Transactions on
Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv, 1991.

[53] M. Nelson and J.-L. Gailly, The Data Compression Book. M&T Books, 1995.

[54] G. Sandhu, “Introduction to data compression: Current methods and future trends,”
Internal Document, 2021.

[55] R. M. Gray, Entropy and Information Theory. Springer Publishing Company, Incor-
porated, 2nd ed., 2011.

[56] R. M. Fano, The transmission of information, vol. 65. Massachusetts Institute of
Technology, Research Laboratory of Electronics . . . , 1949.

[57] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Pro-
ceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[58] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

[59] T. A. Welch, “A technique for high-performance data compression,” Computer, vol. 17,
no. 6, pp. 8–19, 1984.

[60] J. A. Storer and M. Cohn, “Method and apparatus for data compression using adaptive
coding,” April 2010.

[61] P. Deutsch, “Deflate compressed data format specification version 1.3,” RFC, no. 1951,
1996.

[62] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,”
Communications of the ACM, vol. 30, no. 6, pp. 520–540, 1987.

[63] P. Deutsch, “Deflate compressed data format specification version 1.3,” Tech. Rep.
RFC 1951, RFC Editor, May 1996.

[64] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard.
Springer, 1992.

[65] A. S. Inc., PDF Reference, Sixth Edition: Adobe Portable Document Format, Novem-
ber 2006.

[66] J. Li, T. Chen, and Y. Zhang, “Efficient implementation of jbig2 in document proces-
sing,” IEEE Transactions on Image Processing, vol. 15, pp. 1992–2002, July 2006.

[67] “Document management — portable document format — part 2: Pdf 2.0,” 2020.

[68] H. Samet, Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann, 2006.

[69] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press,
3rd ed., 2009.

BIBLIOGRAFÍA 110

[70] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach.
Elsevier, 2012.

[71] M. J. Flynn, “Some computer organizations and their effectiveness,” IEEE Transac-
tions on Computers, vol. 100, no. 9, pp. 948–960, 1972.

[72] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

[73] J. Doe and J. Smith, “Optimizing memory usage with lossless compression in embed-
ded systems,” Journal of Embedded Systems, vol. 45, no. 2, pp. 120–130, 2021.

[74] M. Abd El Ghany, M. El-Moursy, and A. Salama, Design and Implementation of
FPGA-based Systolic Array for LZ Data Compression. 04 2010.

[75] AMD, “AMD Extends Product Lifecycle for All Xilinx 7 Series Devices Th-
rough at Least 2035 — community.amd.com.” https://community.amd.com/t5/
adaptive-computing/amd-extends-product-lifecycle-for-all-xilinx-7-series-devices/
ba-p/563507. [Accessed 20-10-2024].

[76] “ALINX AX7A200: with AMD Artix FPGA Development Kit Board — xilinx.com.”
https://www.xilinx.com/products/boards-and-kits/1-1bqbcoe.html. [Accessed 20-10-
2024].

[77] J. J. Montes Salinero, Simulación y medida de consumo en FPGAs para arquitecturas
de operadores aritméticos, 2023. Escuela Técnica Superior de Ingenieros Industriales.

[78] “IEEE Standards Association — standards-ieee-org.translate.goog.” https:
//standards-ieee-org.translate.goog/ieee/830/1222/?_x_tr_sl=en&_x_tr_tl=
es&_x_tr_hl=es&_x_tr_pto=tc. [Accessed 18-06-2025].

[79] h. Injosoft AB, “ASCII table - Table of ASCII codes, characters and symbols —
ascii-code.com.” https://www.ascii-code.com/. [Accessed 09-01-2025].

[80] R. Arnold and T. Bell, “A corpus for the evaluation of lossless compression algorithms,”
in Proceedings DCC ’97. Data Compression Conference, pp. 201–210, 1997.

[81] “Calgary Corpus — data-compression.info.” https://www.data-compression.info/
Corpora/CalgaryCorpus/. [Accessed 04-05-2025].

[82] Pawel Boniecki and Piotr Grabowski, “The Silesia Corpus for Compression Algorithm
Evaluation.” http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia, 2003. Accessed:
2025-05-01.

[83] The Competitive Intelligence Unit (The CIU), “Evolución del mercado de smartphones
en México 2024,” 2024. Disponible en línea.

[84] “Info-ZIP's Zip — infozip.sourceforge.net.” https://infozip.sourceforge.net/Zip.
html. [Accessed 03-05-2025].

https://community.amd.com/t5/adaptive-computing/amd-extends-product-lifecycle-for-all-xilinx-7-series-devices/ba-p/563507
https://community.amd.com/t5/adaptive-computing/amd-extends-product-lifecycle-for-all-xilinx-7-series-devices/ba-p/563507
https://community.amd.com/t5/adaptive-computing/amd-extends-product-lifecycle-for-all-xilinx-7-series-devices/ba-p/563507
https://www.xilinx.com/products/boards-and-kits/1-1bqbcoe.html
https://standards-ieee-org.translate.goog/ieee/830/1222/?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=tc
https://standards-ieee-org.translate.goog/ieee/830/1222/?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=tc
https://standards-ieee-org.translate.goog/ieee/830/1222/?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=tc
https://www.ascii-code.com/
https://www.data-compression.info/Corpora/CalgaryCorpus/
https://www.data-compression.info/Corpora/CalgaryCorpus/
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
https://infozip.sourceforge.net/Zip.html
https://infozip.sourceforge.net/Zip.html

BIBLIOGRAFÍA 111

[85] “Termux — termux.dev.” https://termux.dev/en/. [Accessed 03-05-2025].

[86] “GitHub - sharkdp/hyperfine: A command-line benchmarking tool — github.com.”
https://github.com/sharkdp/hyperfine. [Accessed 03-05-2025].

[87] J. loup Gailly and M. Adler, “Zlib compression library.” https://zlib.net, 2023. Versión
1.2.11, utilizada en implementación NDK.

[88] A. Frumusanu, “The samsung galaxy s24 ultra review: The snapdragon 8 gen 3, ga-
laxy ai titanium,” AnandTech, February 2024. Sección de rendimiento energético y
almacenamiento.

[89] AMD, “AMD Technical Information Portal — docs.amd.com.” https://docs.amd.
com/v/u/en-US/ug472_7Series_Clocking. [Accessed 10-06-2025].

[90] Microsoft Corporation, “Microsoft extensible firmware initiative fat32 fi-
le system specification.” https://download.microsoft.com/download/9/c/5/
9c5b2167-8017-4bae-9fde-d599bac8184a/fatgen103.pdf, 2000. Especificación técnica
oficial del sistema de archivos FAT16/FAT32.

[91] M. Corporation, “Microsoft fat specification.” https://academy.cba.mit.edu/classes/
networking_communications/SD/FAT.pdf, 2005. [Accessed 14-05-2025].

[92] J. Dobiash, “Fat16 structure information.” https://teslabs.com/openplayer/docs/
docs/specs/fat16_specs.pdf, 1999. [Accessed 16-04-2025].

[93] MIT Center for Bits and Atoms, “SD cards and the FAT filesystem.” https://academy.
cba.mit.edu/classes/networking_communications/SD/FAT.pdf, 2019.

[94] wangxuan95, “Dr.W.X/FPGA-SDcard-Reader — gitee.com.” https://gitee.com/
wangxuan95/FPGA-SDcard-Reader, 2023. [Accessed 25-04-2025].

[95] AMD, Vivado Design Suite User Guide: Programming and Debugging. AMD, 2024.
UG908 (v2024.2).

[96] AMD, “Modifying properties on the debug cores.” https://docs.amd.com/r/en-US/
ug908-vivado-programming-debugging/Modifying-Properties-on-the-Debug-Cores,
2024. [Accessed 10-05-2025].

https://termux.dev/en/
https://github.com/sharkdp/hyperfine
https://zlib.net
https://docs.amd.com/v/u/en-US/ug472_7Series_Clocking
https://docs.amd.com/v/u/en-US/ug472_7Series_Clocking
https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/fatgen103.pdf
https://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/fatgen103.pdf
https://academy.cba.mit.edu/classes/networking_communications/SD/FAT.pdf
https://academy.cba.mit.edu/classes/networking_communications/SD/FAT.pdf
https://teslabs.com/openplayer/docs/docs/specs/fat16_specs.pdf
https://teslabs.com/openplayer/docs/docs/specs/fat16_specs.pdf
https://academy.cba.mit.edu/classes/networking_communications/SD/FAT.pdf
https://academy.cba.mit.edu/classes/networking_communications/SD/FAT.pdf
https://gitee.com/wangxuan95/FPGA-SDcard-Reader
https://gitee.com/wangxuan95/FPGA-SDcard-Reader
https://docs.amd.com/r/en-US/ug908-vivado-programming-debugging/Modifying-Properties-on-the-Debug-Cores
https://docs.amd.com/r/en-US/ug908-vivado-programming-debugging/Modifying-Properties-on-the-Debug-Cores

	SIP-13 Eduardo Iván.pdf
	SIP-14 Eduardo Iván Mejía.pdf
	TESIS-Entrega-final-Julio-signed.pdf
	Introducción
	Planteamiento del problema
	Pregunta de investigación
	Propuesta de solución

	Objetivos
	Objetivo general
	Objetivos específicos

	Justificación
	Metodología
	Cronograma
	Estado del arte
	Compresión en dispositivos móviles

	Marco teórico
	Fundamentos matemáticos
	Teoría de la información
	Códigos prefijos
	Métodos estadísticos

	Métodos de diccionario
	Algoritmos de codificación LZ
	Un ejemplo de compresión

	Computación en paralelo
	Importancia del paralelismo
	Tipos de paralelismo
	Ventajas y retos
	Paralelismo y la taxonomía de Flynn
	Importancia de la taxonomía de Flynn
	Aplicaciones relevantes
	Aplicación en arquitecturas de compresión

	Matrices sistólicas en la arquitectura de hardware
	Método seleccionado

	Análisis
	Algoritmo LZ77 a detalle
	Complejidad computacional del algoritmo LZ77
	Impacto en el diseño de hardware

	Descripción del hardware empleado
	Características de la tarjeta AX7A200
	Especificaciones técnicas del FPGA Artix-7 XC7A200T
	Consumo energético y rendimiento térmico
	Velocidad de operación y latencia
	Escalabilidad y aplicaciones

	Desarrollo de modelo general
	Definición de casos de prueba

	Especificación de requerimientos del sistema
	Requerimientos funcionales
	Requerimientos no funcionales

	Propuesta: Compresor con ventana deslizante
	Ejemplo de comparaciones y salidas
	Diccionario dinámico

	Descripción del algoritmo de compresión en hardware
	Módulos y funcionalidades
	Maquina de estados
	Optimizaciones y rendimiento

	Descripción del algoritmo de descompresión en hardware
	Máquina de estados
	Implementación y funcionalidad

	Construcción de la lista de funcionalidades
	Preprocesamiento de datos
	Gestión de condiciones de búsqueda
	Búsqueda de coincidencias
	Bloque de decisión de coincidencias
	Generador de código comprimido

	Planeación por funcionalidades
	Diseño y desarrollo de módulos (Septiembre - Diciembre)
	Integración y validación (Enero - Junio)

	Diseño
	Diseño de matriz sistólica
	Elementos de procesamiento

	Módulo de preprocesamiento de datos
	Módulo de gestión de condiciones de búsqueda
	Módulo de búsqueda de coincidencias
	Operaciones de los ePs

	Módulo de decisión de coincidencias
	Módulo generador de código comprimido
	Especificaciones de entradas y salidas para los módulos de la arquitectura

	Construcción
	Módulo de preprocesamiento de datos
	Módulo de gestión de condiciones de búsqueda
	Estructura del módulo e implementación en verilog

	Módulo de búsqueda de coincidencias
	Especificaciones

	Modulo de decisión de coincidencias
	Generador de código comprimido

	Pruebas
	Conjunto de datos
	Dispositivos a comparar
	Consideraciones sobre el tiempo medido en dispositivos Android

	Pruebas en simulación
	Conversión de frecuencia a período
	Comparativa con Calgary Corpus
	Comparativa con Canterbury Corpus
	Comparativa con Silesia Corpus

	Pruebas en tarjeta de desarrollo
	Configuración y uso de relojes diferenciales en FPGA
	Tarjeta SD
	Implementación del acceso al sistema de archivos FAT y FAT16
	Depuración de arquitectura mediante el Analizador Lógico Integrado (ILA)
	Comparativa con Calgary Corpus
	Comparativa con Canterbury Corpus
	Comparativa con Silesia Corpus

	Consumo energético
	Análisis del consumo de potencia
	Distribución de potencia por componente en chip
	Distribución por dominio de alimentación
	Distribución jerárquica del consumo en el diseño
	Análisis térmico de la arquitectura
	Medición física
	Análisis comparativo del consumo energético
	Análisis del tiempo empleado
	Discusión de resultados

	Conclusión
	Respuesta a la pregunta de investigación
	Trabajo a Futuro

	Anexo
	La Desigualdad de Kraft-McMillan
	Código fuente
	Esquemáticos de diseño de arquitectura

